Becoming a Programmer Workshop 15 October 2001
Phillip Kerman
www.phillipkerman.com (supplements: www.phillipkerman.com/fk01/)

Basics

Flash Hierarchy (01_fish.swf)
Review of nested clips.

Relative vs. Absolute Addressing (02_rel ati ve_vs_absol ut e. swf)
Addressing, targeting, or otherwise referring to clip instances.
this keyword; _parent keyword; _root keyword.

Explicit vs. Dynamic (03_expl i cit_dynani c. swf)
Form: addresg["string expression”] .property
Example: _root["ball_"+n]._x;

Coordinate System (04_coor di nat es. swf)
_root'stop left is0,0
clip's center is0,0

General Scripting Theory

Writing Instructions
Scripting/programming is nothing more than writing instructions that you want Flash to follow.

Events (05_events. swf)

Events trigger your scripts (that is, they determine when the instructions are foll owed).
Script in keyframe executes when the keyframe is reached.

Script on a button instance executes when the button event occurs (e.g. press).

Form: on (event){ //do this}

Script on a clip instance executes when the clip event occurs (e.g. enter Frame).

Form: onClipEvent(event){//do this}

Clip Events (06_f aces. swf)
Example of simple clip events.

Demo trick: toggling between Normal and Expert Mode
Syntax

Pseudo Code (07_pseudo_code. swf)
See how to refine your own words into ActionScript.

Dot Syntax (08_dot _synt ax. swf)
General to specific
oregong.portland.weather
clip.clipInClip.CliplnsideThatOne._x

Becoming a Programmer 15 October 2001 Phillip Kerman www.phillipkerman.com Page: 1

Syntax (continued)
Special Characters (09_mi scel | aneous. swf)
/lcomment; /* start comment; */end comment;

Expressions and Statements (10_expr essi ons_st at enent s. swf)
Statements are like complete sentences; expressions like phrases.
Expressions are evaluated.

Methods (11_net hods. swf)
Properties are static characteristics; methods are processes.
Hair color is a property; brushing your hair isa method.

Operators (12_operators. swf)
Operators "operate" on operands.
Operators can create expressions (that get evaluated) or statements (that cause a change).

Expression Practice (13 _expression_practice.swf)
newPrice = price— (price* 0.1);

shadow. x = box._x + 10;

circle_x = square._x — (square._width/2) + (circle._width/2);
blue._x = square._x* (blue._x>sguare._x);

score = score * (timesCheated>0);

percent = (line._x—bar._x— (bar._width/2)) / bar._width * 100;
percent = (box._x—min) / (max —min) * 100;

Structures

If-statement (14_i f.swf)

Form: if(condition){//do this}

Form: if(condition){} else{}

Don't forget: == iscomparison; = is assignment.

For-loop (15_f or. swf)

Form: for (init; condition; next){}

Example: for (i=1; i<11; i++){}

Form: while(condition){}

break keyword will jump you out of the current loop.

Fun with Built-in (Simple) Objects

Math Object (16_obj ect s_mat h. swf)

A suite of common math operations that return results.
Form: Math.method();

Form: Math.CONSTANT;

degrees* (Math.P1/180) //returns radians
radians/(Math.P1/180) //returns degrees

Becoming a Programmer 15 October 2001 Phillip Kerman www.phillipkerman.com Page: 2

Fun with Objects (continued)

String Object (17_obj ects_string. swf)
Interesting operations on strings.
Remember: start counting characters 0,1,2,3...

Variables (18_vari abl es. swf)
Variables are a way to store information for later reference.
Variables"live" in onetimeline. As such, they are like homemade properties.

Functions (built-in) (19_functions_builtin. swf)
By definition, functions return values.

Functions (homemade) (20_f uncti ons_honemade. swf)
Form (in keyframe): function name() {}
Accepting Parameters. function name(paramName){}
Returning values: function name (){ return "whatever"; }
To make homemade methods just put function inside a clip.

Arrays (21_arrays.swf)
A way to store multiple valuesin one variable.
Populate: myArray=["index0", "index1", "index3"];
Access. myArray[Q] //to returnitemin first slot.
Change: myArray[0] = "newValue'
Multidimensional Arrays (simply place entire array into an index).
Arrays (plus objects and clips) are a reference data type (compare to copying a shortcuts).
Primitive (or value) data types are more intuitive (compare to copying afile).
Associative Arrays are better named "generic objects’ (see Objects Homemade below).

Built-in Objects (that require instantiation)
Instantiating a movie clip is easy—just drag it fromthe library. But "soft" objects (like Sound,
Color, and Date) require that you create instances by stuffing them into a variable—
mySound=new Sound(). Then you can set properties and apply methods (on the mySound
variable) like any other object (identically to clip instances).

Sound Object (22_obj ect s_sound. swf)

Gives you a way to control sounds with scripting.

Form: mySound= new Sound(); mySound.attachSound("indentifier"); mySound.start();
Applied Exercise (22_sound_appl i ed_wor kshop_5. f | a)
See how easy it isto add a fading sound that matches an alpha change.

Color Object (23_obj ects_col or _dat e. swf)

Control a clip's color effect with scripting.

Form: myColor = new Color ("clip") //notice "clip" isin quotes.

myCol or.setRGB(0xff0000); myColor.setRGB(r<<16 | g<8| b); //replace r,g,b with 0-255

Becoming a Programmer 15 October 2001 Phillip Kerman www.phillipkerman.com Page: 3

Built-in Objects (continued)

Date Object (23_obj ects_col or _dat e. swf)

Do fun stuff with dates.

Form: now = new Date() //or: indyDay = new Date(1776, 6, 4);
now.getDay();// of week starting O=sun

now.getMonth(); //starting O=jan

now.getDate(); //of month starting

Use getTime() to compare two dates.

Homemade Objects (24_obj ect s_homenade. swf)
In the most basic sense, an object isjust a way to store complex structured data.
Form: myObj = new Object(); myObj.prop="val"; // trace(myObj.prop) returns"val"

Constructor function to serve as a template:
function makeBike(){
this.wheel count=2,;
}

roadBike=new makeBike(); bmx=new makeBike(); //now you have two instances.

Constructor can also accept (and use) parameters):
function makeBike(tireSze, frameColor){
thistire=tireSze;
this.color=frameColor;
this.wheel Count=2;
} I/ instantiate with: bmx=new makeBike(18, "silver")

To create a method, first make the function:
function rePaint(newColor){
this.color=newColor;
this.layerst++;
}
...then, extend the constructor's prototype property (this property contains all methods):
makeBike.prototype.paint=rePaint; //now you can do bmx.paint("red");

Creating a constant is similar to making a method. Just give the prototype a property—but
point to a value (not a function):
makeBike.prototype.FUEL="leg power";

To inherit all methods and properties from a parent constructor use:

child.prototype = new parent(); //where child and parent both have constructors.
Compare to child.prototype.method = function. This just extends child by adding a new
method... the first case replaces all methods of child with those of parent.

Becoming a Programmer 15 October 2001 Phillip Kerman www.phillipkerman.com Page: 4

[/lthen..

...then

--Object example 1

function transportation(){ this.position = 0; }
function advance(){ this.position += this.speed; }
/Imake move() method for transportation object:
transportation.prototype.move = advance;

function makeBike (frameS ze){
this.size = frameSze
thisspeed = 20; }

function makeCar (model){
this.model = model
this.speed = 100; }

/Imake makeCar and makeBike objects inherit everything from transportation objects:

makeBike.prototype = new transportation();
makeCar .prototype = new transportation();

mMySUV = new makeCar ("jeep");
myConvertible = new makeCar ("corvette");

trace("before: " + mySUV.position); //"before: 0"
mySUV.move();
trace("after: " + mySUV.position); //"after: 100"

--Object example 2
Alternatively, you can make a child inherit just the methods of a parent:
child.prototype.__proto__=parent.prototype;

function transportation(){ //na}

function advance(){ this.position += this.speed; }
transportation.prototype.move = advance;

function speedUp(){ this.speed += (this.speed/10);}
transportation.prototype.speedUp = speedUp;

function bike (frameSze){

this.size = frameSze

thisspeed = 20; }
function car (model){

this.model = model

thisspeed = 100; }
function getBikeData(){

return this.size + " inch bike going " + this.speed;}
bike.prototype.report = getBikeData;
bike.prototype.__proto__ = transportation.prototype;

racer = new bike (27); trace(bmx.report()); // 18 inch bike going 20"
bmx = new bike (18); trace(racer.report()); //"27 inch bike going 20"
bmx.speedUp(); trace(bmx.report()); //18 inch bike going 22"

Becoming a Programmer 15 October 2001 Phillip Kerman www.phillipkerman.com

Page: 5

