
Becoming a Programmer 15 October 2001   Phillip Kerman  www.phillipkerman.com             Page: 1 

Becoming a Programmer Workshop  15 October 2001 
Phillip Kerman 
www.phillipkerman.com  (supplements: www.phillipkerman.com/fk01/) 
 
Basics 
 

Flash Hierarchy  (01_fish.swf) 
Review of nested clips. 

 
 Relative vs. Absolute Addressing (02_relative_vs_absolute.swf) 
 Addressing, targeting, or otherwise referring to clip instances. 
 this keyword; _parent keyword; _root keyword. 
 
 Explicit vs. Dynamic (03_explicit_dynamic.swf) 
 Form: address["string expression"].property 
 Example: _root["ball_"+n]._x; 
 
 Coordinate System (04_coordinates.swf) 
 _root's top left is 0,0 
 clip's center is 0,0 
 
General Scripting Theory 
 
 Writing Instructions 

Scripting/programming is nothing more than writing instructions that you want Flash to follow.   
 
 Events (05_events.swf) 

Events trigger your scripts (that is, they determine when the instructions are followed). 
Script in keyframe executes when the keyframe is reached. 
Script on a button instance executes when the button event occurs (e.g. press). 
Form: on (event){ //do this} 
Script on a clip instance executes when the clip event occurs (e.g. enterFrame). 
Form: onClipEvent(event){//do this} 
 
Clip Events (06_faces.swf) 
Example of simple clip events. 
 
Demo trick: toggling between Normal and Expert Mode 

 
Syntax 
 
 Pseudo Code (07_pseudo_code.swf) 
 See how to refine your own words into ActionScript. 
 

Dot Syntax (08_dot_syntax.swf) 
General to specific 
oregong.portland.weather 
clip.clipInClip.ClipInsideThatOne._x 



Becoming a Programmer 15 October 2001   Phillip Kerman  www.phillipkerman.com             Page: 2 

Syntax (continued) 
Special Characters (09_miscellaneous.swf) 
//comment;  /* start comment;  */end comment; 

 
Expressions and Statements (10_expressions_statements.swf) 
Statements are like complete sentences; expressions like phrases. 
Expressions are evaluated. 
 
Methods (11_methods.swf) 
Properties are static characteristics; methods are processes. 
Hair color is a property; brushing your hair is a method. 
 
Operators (12_operators.swf) 
Operators "operate" on operands. 
Operators can create expressions (that get evaluated) or statements (that cause a change). 
 
Expression Practice (13_expression_practice.swf) 
newPrice = price – (price * 0.1); 
shadow._x = box._x + 10; 
circle._x = square._x – (square._width/2) + (circle._width/2); 
blue._x = square._x * (blue._x>square._x); 
score = score * (timesCheated>0); 
percent = (line._x – bar._x – (bar._width/2) ) / bar._width * 100; 
percent = (box._x – min) / (max – min) * 100; 

 
 
Structures 
 
 If-statement (14_if.swf) 
 Form: if(condition){//do this} 
 Form: if(condition){} else {} 
 Don't forget: == is comparison; = is assignment. 

 
For-loop (15_for.swf) 
Form: for (init; condition; next){} 
Example: for (i=1; i<11; i++){} 
Form: while(condition){} 
break keyword will jump you out of the current loop. 

 
 
Fun with Built-in (Simple) Objects 
 
 Math Object (16_objects_math.swf) 
 A suite of common math operations that return results. 
 Form: Math.method(); 
 Form: Math.CONSTANT; 
 degrees*(Math.PI/180) //returns radians 
 radians/(Math.PI/180) //returns degrees 



Becoming a Programmer 15 October 2001   Phillip Kerman  www.phillipkerman.com             Page: 3 

Fun with Objects (continued) 
 
 String Object (17_objects_string.swf) 
 Interesting operations on strings. 
 Remember: start counting characters 0,1,2,3... 
 
Variables (18_variables.swf) 
 Variables are a way to store information for later reference. 
 Variables "live" in one timeline.  As such, they are like homemade properties. 
 
Functions (built-in) (19_functions_builtin.swf) 
 By definition, functions return values. 
 
Functions (homemade) (20_functions_homemade.swf) 
 Form (in keyframe): function name() {} 
 Accepting Parameters: function name(paramName){} 
 Returning values: function name (){ return "whatever"; } 
 To make homemade methods just put function inside a clip. 
 
Arrays (21_arrays.swf) 
 A way to store multiple values in one variable. 
 Populate: myArray=["index0", "index1", "index3"]; 
 Access: myArray[0] //to return item in first slot. 
 Change: myArray[0] = "newValue" 
 Multidimensional Arrays (simply place entire array into an index). 
 Arrays (plus  objects and clips) are a reference data type (compare to copying a shortcuts). 
 Primitive (or value) data types are more intuitive (compare to copying a file). 
 Associative Arrays are better named "generic objects" (see Objects Homemade below). 
 
 
Built-in Objects (that require instantiation) 

Instantiating a movie clip is easy—just drag it from the library.  But "soft" objects (like Sound, 
Color, and Date) require that you create instances by stuffing them into a variable—
mySound=new Sound().  Then you can set properties and apply methods (on the mySound 
variable) like any other object (identically to clip instances). 

  
Sound Object (22_objects_sound.swf) 
Gives you a way to control sounds with scripting. 
Form: mySound= new Sound();  mySound.attachSound("indentifier"); mySound.start(); 

Applied Exercise (22_sound_applied_workshop_5.fla) 
See how easy it is to add a fading sound that matches an alpha change. 

 
 Color Object (23_objects_color_date.swf) 

Control a clip's color effect with scripting. 
Form: myColor = new Color ("clip") //notice "clip" is in quotes. 
myColor.setRGB(0xff0000);  myColor.setRGB(r<<16 | g<8 | b); //replace r,g,b with 0-255 



Becoming a Programmer 15 October 2001   Phillip Kerman  www.phillipkerman.com             Page: 4 

Built-in Objects (continued) 
 

Date Object (23_objects_color_date.swf) 
Do fun stuff with dates. 
Form: now = new Date()  //or:  indyDay = new Date(1776, 6, 4); 
now.getDay();// of week starting 0=sun 
now.getMonth(); //starting 0=jan 
now.getDate(); //of month starting  
Use getTime()  to compare two dates. 

 
Homemade Objects (24_objects_homemade.swf) 
 In the most basic sense, an object is just a way to store complex structured data. 
 Form:  myObj = new Object();  myObj.prop="val"; // trace(myObj.prop) returns "val" 
 

Constructor function to serve as a template: 
    function makeBike(){ 
        this.wheelcount=2; 
    } 
    roadBike=new makeBike();  bmx=new makeBike();  //now you have two instances. 
 
Constructor can also accept (and use) parameters): 
    function makeBike(tireSize, frameColor){ 
        this.tire=tireSize; 
        this.color=frameColor; 
        this.wheelCount=2; 
   } // instantiate with: bmx=new makeBike(18, "silver") 

 
 To create a method, first make the function: 
  function rePaint(newColor){ 
      this.color=newColor; 
       this.layers++; 
  } 
 ...then, extend the constructor's prototype property (this property contains all methods): 
 makeBike.prototype.paint=rePaint;   //now you can do bmx.paint("red"); 
 

Creating a constant is similar to making a method.  Just give the prototype a property—but 
point to a value (not a function): 
makeBike.prototype.FUEL="leg power"; 
 
To inherit all methods and properties from a parent constructor use: 
child.prototype = new parent();  //where child and parent both have constructors. 
Compare to child.prototype.method = function.  This just extends child by adding a new 
method... the first case replaces all methods of child with those of parent. 



Becoming a Programmer 15 October 2001   Phillip Kerman  www.phillipkerman.com             Page: 5 

--Object example 1 
function transportation(){ this.position = 0; } 
function advance(){ this.position += this.speed; } 
//make move() method for transportation object: 
transportation.prototype.move = advance; 

 
function makeBike (frameSize){  

      this.size = frameSize 
    this.speed = 20;      } 

 
function makeCar (model){ 
    this.model = model 
    this.speed = 100;      } 

 
//make makeCar and makeBike objects inherit everything from transportation objects: 
makeBike.prototype = new transportation(); 
makeCar.prototype = new transportation(); 

 
//then... 

mySUV = new makeCar ("jeep"); 
myConvertible = new makeCar ("corvette"); 
  
trace("before: " + mySUV.position); //"before: 0" 
mySUV.move(); 
trace("after: " + mySUV.position); //"after:100" 
 
--Object example 2 
Alternatively, you can make a child inherit just the methods of a parent: 
child.prototype.__proto__=parent.prototype; 
 
function transportation(){ //na} 
function advance(){ this.position += this.speed; } 
transportation.prototype.move = advance; 
function speedUp(){ this.speed += (this.speed/10);} 
transportation.prototype.speedUp = speedUp; 

 
function bike (frameSize){  

      this.size = frameSize 
    this.speed = 20;      } 
function car (model){  
    this.model = model 
     this.speed = 100;      } 
function getBikeData(){  

       return this.size + " inch bike going " + this.speed;} 
bike.prototype.report = getBikeData; 
bike.prototype.__proto__ = transportation.prototype; 

...then 
racer = new bike (27); trace(bmx.report());  // "18 inch bike going 20" 
bmx = new bike (18);  trace(racer.report()); //"27 inch bike going 20" 
bmx.speedUp();  trace(bmx.report());  //18 inch bike going 22" 


