
Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

Smart Clips Made Easy
Phillip Kerman

Annotated presentation, downloads, and sample chapters from my two books
(Sams Teach Yourself Flash 5 in 24 Hours and ActionScripting with Flash) available at:
www.teleport.com/~phillip/ff2001

__Clips that are smart and Smart Clips

Every instance of a symbol on stage maintains its own properties. For example, you can set the
position, scale, rotation, and effects (like tint and alpha) differently for each instance you drag onto the
stage. Using ActionScript you can refer to properties of individual instances during runtime using the
form: object-dot-property--such as clip1._rotation where "clip1" is the instance name of a
particular clip. To change the _rotation property of clip1 you can simply assign it a new value
as in clip1._rotation=90.

Similar to how clip instances maintain their own set of properties, custom variables become part of
individual instances. You can refer to and change such variables using the same object-dot-property
form. That is, clip1.age=35 assigns the age variable in clip1 to 35. It's often easiest to simply
think of variables in clips as a "homemade properties". Call them "variables" or "properties" (or even
"parameters" if you want). The fact is, both built-in properties and custom variables are independent
for each instance and use the same syntax. The fact that many custom variables have no visual
representation onscreen is immaterial--you can always monitor variables with the Debugger or use the
variables in other parts of your code. For example, when tracking the user's score you may not want to
let them see the current value.

One difference between built-in properties and variables in clips is that built-in properties are set
during authoring. Variables in clips are set during runtime with ActionScript. Setting variables is not
difficult, but if you want the variables in each instance of the same symbol to start with different values
you must set the variables from outside the clip. That is, initializing clip variables individually is
achieved with a frame script outside the instance or in a load clip event script attached individually to
each clip instead. (Actually, it's possible to write a dynamic expression and place it inside the master
symbol--perhaps in its first keyframe--that initializes variables uniquely based on a clip property such
as _name but you'll see Smart Clips make this unnecessary.) The practical problem initializing
variables outside the master symbol is that you either need to name each instance (so you can refer to
the variable contained) or you need to place a separate (load clip event) on every instance. For every
new instance you need to remember to either name it and set its variables or to attach a script to the
individual instance. Therefore, your code becomes spread out and repeated in many places.

Smart Clips solve this issue by allowing you (the author) the ability to specify which variables (call
them properties or parameters) can be set via the Clip Parameters panel by the author using the Smart
Clip. In this way, you now have homemade properties that are changed via a panel.

Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

__A Smart Clip is born

Converting a Movie Clip into a Smart Clip is easy. However, you should first determine which
variables the using author needs access to. Then you simply use the Define Clip Parameters dialog to
specify which variables will be accessible to the using author. That's it. Smart Clips can be dragged
onstage and, through the Clip Parameters panel, have their respective variables changed. Although the
Clip Parameters panel and Define Clip Parameters dialog sound like the same thing, they're not. You
specify variables through the "Define Clip Parameters" dialog (in the Library) and the using author
populates individual instances with the "Clip Parameters panel".

Examples of Simple Smart Clips

Style guide or template. Inside a Movie Clip, lay out a Dynamic Text field associated with the variable
title. Use the Define Clip Parameters to allow the using author to specify the value for title
(that is, the text that will appear). This Smart Clip can be used throughout a movie. The best part is
that you can change the style or formatting of the text, and--since it's stored only once as a symbol--
you'll see the changes reflected everywhere. Finally, a script placed in the first keyframe of the Smart
Clip such as _x=320; _y=240; will make every instance appear in the same location regardless of
where the sloppy author placed it.

Arrow button. Instead of having a separate button for "next" and another for "previous" (each with a
slightly different version of the same basic code) place the button inside a Movie Clip. Turn it into a
Smart Clip by allowing the using author to specify direction (either 1 or -1). Then the script you
place on the button should use the value of direction to decide what script to execute. For
example:
on (release) {
 _root.gotoAndStop(_root._currentFrame+direction);
}

Speaker Notes. The online version of this presentation loads variables containing about a paragraph of
text for each slide. The user can rollover a button to reveal the appropriate text. I made a Smart Clip
that let me (the using author) specify which variable would be associated with each instance I dragged
on stage. I just dragged the Smart Clip into content areas (of my Flash movie) for which I had written
speaker notes.

Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

__Details of Define Clip Parameters

For every variable that you specify through the Define Clip Parameters dialog you need to provide a
default value (in case the using author never fills it in). In addition, you can select from four "types"
which are comparable to data types. Basically, the type you choose affects how the using author will
populate the variables. Here are the four types:
Default is for individual numbers or strings. Using authors can basically set values to anything they
want.
List lets the author select from a drop-down list. This way you limit the values from which the using
author may select. In the end, your variables still contain just one string or one number value.
Array is quite different than List. Not only can the using author add and remove items (where in
the List type is a predefined list) but in the end, the variable becomes an array data type with
individual values in each index.
Object lets the using author set values for multiple properties of a single variable. The generic
object data type (also known as "associative arrays") is like regular arrays with their multiple values,
however objects have a name for each value. It's really like having a set of name/values within a single
variable. This option is best when you need or want simple objects in your clip. It takes more effort to
populate this type of variable but you can restrict the using author to a predefined list of properties like
the List type.

You can allow the using author to rename, add, or remove the variables you defined by un-checking
"Lock in Instance". You can also provide a description that serves to explain how to use the Smart
Clips.

Realize that the using author sets variables that are part of the main Smart Clip. You can use as many
variables both contained in the Smart Clip and in nested clips--but through the Clip Parameters panel
the using author simply sets variables of the Smart Clip. Only make the using author populate the
variables necessary to make the Smart Clip behave uniquely.

__Custom User Interfaces (UIs)

You can make a separate .swf that plays inside the Clip Parameters panel (effectively replacing the
name/value table). You should first justify why you'd want to do this. To simply make something
more entertaining has questionable merit. There are two times that I see a need to create a Custom UI.
First, if a better interface device can remove a tedious process of populating data--use it. For example,
selecting colors by clicking a swatch or color selector is much easier than, say, typing the HEX values.
The second reason to consider a Custom UI is when the using author needs to be guided through the
populating process. Not so much to keep them from breaking things, but sometimes one variable's
value will eliminate the need to gather another. In those cases it's nice to make a Custom UI that walks
the user through the various settings like a "wizard". For example, the learning interactions Smart
Clips that ship with Flash use tabs for this purpose.

Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

Enough of the reasons not to make a Custom UI--here's how it's done. Identify the variables the using
author will be populating. These must be stored in a clip in the main timeline (of the source UI .fla)
with the instance name xch. You can think of the xch instance as a surrogate for the actual Smart
Clip--but just to hold the necessary variables. I find it easiest to just use an invisible clip instance for
this purpose. This instance needs to be present in the very first frame of the ui.fla--put the xch clip in
its own layer for convenience. Then you just build your UI movie to allow a user to set the key
variables inside _root.xch. Building the script that lets the user interact is easy enough... even
displaying highlights as they make selections is straightforward. However, realize that unlike most
movies that always initialize all variables the same way, the custom UI should visually reflect the
values of variables set previously. That is, the using author may pull up the Clip Parameters panel to
inspect clips they've already populated. If you keep the xch clip in the first frame, the variables are
initialized properly. However, you need to build some "restoration" script that re-displays highlights to
represent the current values of the variables. The killer is that such a restoration script must be placed
after the first frame... at frame 10 to be safe. Think of it this way: First, the using author clicks on a
Smart Clip instance in the host movie. Then the Clip Parameter panel determines the variables of that
instance and launches the Custom UI movie. An second later the Clip Parameters panel reinitializes
variables in the Custom UI .swf's xch clip. Then... the Custom UI is free to use the new values of
variables contained in its xch clip. Whether or not that makes sense (and regardless of the fact you
may not like it) you must wait to restore visual highlights. By the way, Dynamic or Input text fields
contained in an xch clips will automatically restore--but if you're just using text why even bother with
a custom UI?

The Custom cursor example demonstrated is in my new book ActionScripting with Flash.

__Additional Information

--Tip 1: Buttons can't be placed on top of buttons. While it would be very convenient to use the on
(rollOver) event that a button offers, if you plan to use your Smart Clip on top of buttons inside a
movie you'll find the two buttons conflict. For example, if you make a custom cursor Smart Clip that
lets the using author place it on top of any other button, you cannot use an invisible button inside the
Smart Clip (to figure out when it's time to show the cursor). Instead use either the getBounds() or
hitTest() methods.

Consider this code snippet:
onClipEvent (load) {
 rect=this.getBounds(_parent)
 _visible=0;
}
onClipEvent(mouseMove){
 if(_xmouse>rect.xMin&&_xmouse<rect.xMax&&_ymouse>rect.yMin&&_ymouse<rect.yMax){
 active=true;
 } else {
 active=false;
 }
}

Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

Using hitTest() may look cleaner, but notice you can't make the clip itself invisible:

onClipEvent (load) {
 //_visible = 0;
 _alpha = 0;
}
onClipEvent (mouseMove) {
 if (hitTest(_root._xmouse, _root._ymouse, 1)) {
 active = true;
 } else {
 active = false;
 }
}

--Tip 2: If you plan to use attachMovie() to dynamically create clip instances inside your Smart
Clip, be sure to include a copy of each symbol (being attached this way) in a guide layer. That way,
when you copy the Smart Clip to another file, all the associated symbols are copied with it. Naturally,
the guide layer isn't needed during runtime--it just assures all the symbols get copied.

--Tip 3: You can override built-in properties by including them when you "Define Clip Parameters".
For example, specify that _name will be set through the Clip Parameters panel. If you provide a
default this makes it possible to automatically name every instance that's dragged on stage. By the
way, this will override any settings you make through other panels such as the Instance panel.

--Tip 4: When you add parameters (through Define Clip Parameters), instances on stage may need to
be replaced to reflect the new options.

--Tip 5: Similar to how you must remember to click off the Instance panel after renaming an instance,
you'll want to make sure changes you make (as a using author) in the Clip Parameters panel are saved
by clicking the stage after each edit. (Don't immediately, Test Movie... don't click tab.)

Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

__Bonus topic: The Cookie Object

Here's how you set preferences for a Custom UI through the undocumented (and unsupported) Cookie
Object. Any .swf that is played through the authoring player (that is, through Test Movie or as a
Custom UI) can read and write XML structured text files in the "Mmfdata" folder (adjacent to your
installed version of Flash). When you write a file, the filename is generated automatically so that it's
associated with the .swf that created it. Therefore, when you decide to load data from file you don't
need to specify the filename--you automatically read from the file this .swf created last time. If you
snoop around the "Mmfdata" folder you'll see that the Dashboard takes advantage of the Cookie Object
in order to store information such the last date you ran the Update feature and your preference for auto-
update.
Here's the syntax:
Cookie.setCookie(structuredString)
Where "structuredString" is your XML structured data string that you want saved.

returnedXMLobject=Cookie.getCookie()
Where "returnedXMLobject" is the value returned. The getCookie() method can be used just like
the XML Object's load() method (but without the URL parameter). Similarly, you'll want to wait
for the data to fully load. Therefore, be sure to use the onLoad() method like this:
xmlObj = new XML();
xmlObj=Cookie.getCookie();
xmlObj.onLoad=triggerFunction;
Where "xmlObj" is the variable that will contain the XML object and "triggerFunction" is the name of
the function you want called when the data has fully loaded (perhaps a parsing routine).

Here's a contrived example that shows how to use the Cookie Object:

Consider a Smart Clip that provides the using author a choice of several colors. Each color is
associated with a frame number (that's colored accordingly) in a clip highlight. The variable
colorNum is contained in the xch instance so that it becomes part of the Smart Clip.
In frame 10 of the source Custom UI file, the following script either restores the last colorNum value
(by jumping to the correct frame in the highlight clip), or (if no value has been set and the value is
undefined) executes the getCookie() method to read in the most recent value of colorNum
(selected by anyone using this Smart Clip).

message="";
stop();
if(xch.colorNum<>undefined){
 highlight.gotoAndStop(xch.colorNum);
}else{
 xmlObj = new XML();
 xmlObj=Cookie.getCookie();
 xmlObj.onLoad=parse;
}

Notice that if xch.colorNum is undefined that when the getCookie() method is finished loading
into the xmlObj variable (that is onLoad), the parse() function (below) is called. The necessary

Smart Clips Made Easy 19 February 2001
Phillip Kerman www.teleport.com/~phillip phillip@teleport.com +1 503 236-7721

portion of the whole xmlObj variable is extracted and placed in a variable frameNum, then the
highlight clip jumps to that frame, xch.colorNum is assigned (in case the using author leaves
without making a selection), and finally, the value for a variable message (contained in a Dynamic
Text field) is assigned.

function parse(){
 var frameNum=Number(xmlObj.firstChild.childNodes[0].nodeValue);
 highlight.gotoAndStop(frameNum);
 xch.colorNum=frameNum;
 message="most recent";
}

Finally, this is the function that is called every time the using author makes a selection. That is,
setOne(whichWay) is called where "whichWay" is the value of the colorNum they are selecting
(also the frame number in the highlight clip to where they'll jump). After the xch.colorNum is
assigned, they jump to the correct frame in the highlight instance. Then, a very simple XML structured
string is built and the setCookie() method writes the information to file where it can be read in
next time.

function setOne(whichWay){
 xch.colorNum=whichWay;

highlight.gotoAndStop(whichWay);
 form="<COLORNUM>"+xch.colorNum+"</COLORNUM>"
 Cookie.setCookie(form);
}

