
h t t p : / / w w w . m u j . c o mh t t p : / / w w w . m u j . c o mh t t p : / / w w w . m u j . c o m

Reprinted with permission from the July 1999 issue of Macromedia User Journal. ©1999 Pinnacle Publishing. For more
information or a free trial subscription to Macromedia User Journal, call 1-800-788-1900 or go to www.muj.com.

A Meaningful
Conversation Between
JavaScript and Flash
Phillip Kerman

If you think Flash has limited “programming” capabilities, think
again. (And if you think Flash 4’s new Action Scripts are a full-
fledged programming language, you should think again again.)
Anything JavaScipt can do, Flash can too. Flash can send and
receive messages to and from JavaScript, so it’s the logical step
for those who want to go beyond the basic features of HTML and
Flash. This article picks up where Flash’s “FS Command” starts.

WHY bother learning JavaScript? After all, Flash
4 now has scripting capabilities like custom
variables and built-in properties that you can

access or change. What’s the point learning another
programming language if Flash can do it all?

That’s exactly what I thought, having proposed to
deliver a presentation on this topic at the Macromedia User
Conference (UCON ’99). I wondered if there was still a need
for communication between JavaScript and Flash. There is.
There are still limits in Flash that JavaScript can take you
beyond. Besides, JavaScript is a full-fledged programming
language, and Flash 4’s “Action Script” language is, frankly,
limited. Finally, I believe that every minute invested learning
JavaScript is time well spent because the knowledge is
transferable—indirectly when you learn other languages
(like Director’s Lingo dot-syntax), and directly as JavaScript
becomes the default language for user add-ons to
Macromedia products (more about that in the summary).

You can do a lot within Flash. The need for JavaScript
arises after you exhaust the possibilities of “tell target” and

“load movie” (see Darrel Plant’s article “Messaging in Flash:
Using Tell Target and Load Movie Commands” in the June
1999 issue). “Tell target” lets you direct messages to specific
movie clip instances, and “load movie” enables you to
modularize your content. This article assumes you
understand these two techniques because we pick up where
they stop, and analogies will be made to them.

Every Flash is an island
The fundamental limit of Flash (now that it supports
variables) is that Flash can’t talk and it can’t listen. An
exception is the form POST and GET. However, if you want
to tell Flash to start a movie in the middle—you have to say it
inside Flash. Suppose you have a long introduction
animation on your home page. After the user watches it,
they probably don’t want to sit through it again. A “skip
introduction” button (right in the Flash movie) is a common
solution to this annoyance. But what if your HTML
document remembered that the user watched the animation
and told the Flash movie to skip ahead? It can! You can store
a variable, say “seen_intro,” in JavaScript (in an invisible
HTML frame, if you want), and then, depending on the
value of “seen_intro,” you can tell the Flash movie to “GoTo”
a particular frame number.

Are you talkin’ to me?
Flash can talk to JavaScript, and JavaScript can talk to Flash.
We’ll let JavaScript do the talking in a minute. The way Flash

2 http://www.muj.comMacromedia User Journal July 1999

talks to JavaScript is through the “FS Command” (FS stands
for “Future Splash”—the original name for Flash, in case
you’re wondering). It’s a bit confusing, because if you look
up FS Command in the Flash manual, you’ll only learn
about FS Command’s other use—namely, to “talk” to the
standalone projector. Things like Quit and Full Screen, for
example. These have nothing to do with JavaScript.

When you want Flash to talk to JavaScript, simply place
an FS Command action in the Flash movie (in a frame or
under a button), and when the user reaches that action (that
is, reaches the frame or presses the button), a signal is sent to
the “host” HTML file, and JavaScript is invoked. The
JavaScript can then simply execute a built-in function (like
“alert”), invoke a custom function, or process the call in
multiple steps. Once the message is sent from Flash, it’s up
to JavaScript to deal with it.

JavaScript can talk to a Flash movie in one of two basic
ways. Either JavaScript simply tells the Flash movie to do
something (like go to a frame, or stop, etc.) or JavaScript can
ask Flash for information—like, “Hey, Flash, what frame are
you on right now?” Then JavaScript can do what it wants
with that information. JavaScript can talk to Flash at any
time—but since JavaScript is an event-based language, the
“discussion” usually begins after a standard event occurs
(like onMouseOver, onClick, or onLoad).

It’s not always a clear case of JavaScript talking to
Flash, or vice versa. Flash can say to JavaScript: “Do
something now,” but part of that something can include
JavaScript asking Flash for information, then telling Flash
to do something.

Before you start
A few basics are worth learning first. The JavaScript
language is organized in the “document object model”
(or DOM)—a logical way to access properties by first
specifying the object, then the property. Think of it as
general to specific. So if you want to refer to the weather
in my hometown, Portland, Oregon, you don’t say “the
weather in Portland, Oregon USA”—rather,
“USA.Oregon.Portland.Weather”. Also, don’t forget that
when referring to properties, you can be setting them or
getting the current value. (In either case, with Portland, the
weather will be rain.)

Now, let’s move on to the “embed” tag. Although you
might not need to memorize the HTML embed tag, you
should understand the basics. The Flash “object” needs to be
named (ID=“movieName” for IE and Name=“movieName”
for Netscape). In Netscape, there’s another tag required:
“liveConnect=TRUE” (which causes that interminable
“Starting Java…” message to appear in the browser—more
about that later). Alternatively, you can choose “Flash with
FS Command” from the “Template” drop-down in the
“HTML” tab in Flash’s “File > Publish Settings” dialog box.
However, you probably won’t learn anything doing it this
way, so just use these ready-built templates as guides. And

be careful: I found a bug in this particular template, as it’s
actually missing the “Name=movieName” tag for Netscape
(to fix the template, open the “FSCommand.html” and add
“NAME=$TI” to the end of the line containing
“swLiveConnect=true”).

Flash talking to JavaScript
The message flow when the FS Command action is
encountered is pretty straightforward. The message comes
from Flash and is always channeled through the JavaScript
function “DoFSCommand”. Once inside the
DoFSCommand, JavaScript will execute any number of lines
of code you include. What if you want two separate buttons
in Flash to invoke two separate actions? They both still go
through the DoFSCommand, but the first parameter
received is the string you’ve typed into the FS Command
action’s “Command” field. If the separate actions have
different “command” parameters, then it’s a simple matter
to have JavaScript determine the value of the command. (If
command=“this” then do this, if command=“that” then do
that.) The DoFSCommand is the “clearinghouse,” and all
messages from Flash are channeled through this function.

Figure 1 shows one big DoFSCommand function that
sorts out three separate actions from Flash. The first two
buttons send the command parameter of “say_something”
with an additional “argument” parameter of “Red” and
“Green,” respectively. (See Figure 2 for detail on the button’s
action in Flash.) The “do_and_say” command causes the
DoFSCommand JavaScript to step through several
procedures. So, you see, it’s not just Flash saying
“DoFSCommand”… it’s Flash saying “DoFSCommand, this
command, with this additional argument.” And, when
JavaScript hears DoFSCommand, it knows to expect two
parameters and can determine the value of each. Finally,
notice that in the examples, the function name isn’t
“DoFSCommand” but rather “flashObj_DoFSCommand”—
that’s because the name given to the embedded Flash movie

Figure 1. Three buttons in one Flash movie can all “talk” to
JavaScript. Each button invokes the DoFSCommand function, but
depending on the value of the parameters sent (command, args),
the function will act differently.

http://www.muj.com 3Macromedia User Journal July 1999

is added as a prefix to the JavaScript function. (The Flash
movie’s name, in this case, is “flashObj”.) This way, you can
have several Flash movies in the same Web page and they’ll
have their own private DoFSCommands.

JavaScript talking to Flash
JavaScript talks to Flash by referring to the embedded “Flash
Object” (that is, the name or ID we gave it in the embed tag).
Remember, JavaScript can either tell Flash to do something
or ask Flash for information. In either case, the technique
is the same: if the Flash movie’s “name” is “flashObj”,
then the JavaScript reads flashObj.doSomething() or
aVariable=flashObj.getInformation(). There isn’t really a
“doSomething” or “getInformation” property (or
“function”)—the bulk of properties available (including new
ones for Flash 4) are in Table 1 on page 4. You’ll find things
like Play(),GotoFrame(), and IsPlaying(). Just remember,
some properties simply do something (like “play”) and other
properties return values (like “isPlaying”).

The occasion for JavaScript talking to Flash is usually
the result of a JavaScript event. That is: JavaScript can talk to
Flash any time, so when does it start talking? On some
event. Events such as onClick() and onMouseOver() are
basic JavaScript events. So, to make a text “stop” button for
your Flash movie, you can have a hyperlink in the HTML
that reads:

Stop

The URL “#” prevents the link from actually going any-
where. In this case, the JavaScript talking to Flash is right
down there in the href. It might be more efficient to call your
own JavaScript function that, in turn, talks to the Flash
movie.

Not just a one-way street
Remember, it’s not just Flash or JavaScript talking to the
other. The way Flash talks to JavaScript is via the
FSCommand, and the way JavaScript talks to Flash is by
accessing one of the available methods. Each case is a one-
way conversation. However, once the conversation starts, it
can keep flowing. Flash can invoke the DoFSCommand,
which, in turn, calls another JavaScript function. You need to
think of each step in detail, but that doesn’t mean you have
to be limited to simple one-way conversations. For example,
one Flash movie can tell JavaScript to tell another Flash
movie to stop. In a recent project, we put all of the sounds in
one Flash “audio” movie (which never reloaded). Then any
of the other Flash movies that appeared would tell
JavaScript to tell the audio Flash movie to go to a particular
frame (with the desired audio). The point is, don’t limit your
thinking.

The easy way
The “liveConnect” tag will cause Netscape to pause while
the runtime for JavaScript boots up. This is necessary

anytime you want Flash to use the FSCommand. However,
there’s a much simpler solution (that doesn’t work on some
older browsers). You can use the Flash action “getURL” and
specify the URL as “javascript:alert(“Hello”);”—simply
“javascript:” followed by the actual JavaScript code. It can be
a bit hard-wired, and it doesn’t work on some browsers—
however, it’s easy and doesn’t delay during that long
“Starting Java…” message. This method is almost identical
for how Flash talks to Director’s Lingo—namely, a “getURL”
action with “lingo:theLingoCode()”.

Sounds easy, but…
There are several “gotchas” of which to be aware. I lied
when I said all messages from Flash to JavaScript travel
through the FS Command. In Microsoft Internet Explorer
(IE), the VBScript subroutine is invoked, but inside this
subroutine, the regular JavaScript FS Command is “called.” I
suppose you could duplicate your code, but it makes sense to
keep all of the code in one place (the FS Command) and
simply re-direct IE to the JavaScript.

There’s not much creativity to writing the VBScript re-
direct (just copy and paste it from the HTML produced from
Aftershock or Flash 4’s new “publish” command). However,
since some browsers don’t like the VBScript just sitting out,
most people build the entire subroutine as a string and then
use the “write” function to put it in the HTML document.
(See the template “FSCommand.html” in Flash 4’s “HTML”
folder for a sample.)

Continuing with the theme “they’ve gotta be different”
(Netscape and IE, that is): In Netscape you can refer to the
embedded Flash object (which we named “flashObj”) with
window.document[“flashObj”]. In IE, you simply use
window[“flashObj”]. In either case, you follow this by a
decimal and the property you want to get or set. (Window
isn’t necessary when you’re referring to a Flash object in the
current window—however, it’s a good practice to include it

Figure 2. Flash talks to JavaScript though the FSCommand action.
In the field for “Command:” the first parameter (“say_something”)
can be entered, and in the field for “Arguments,” the second
parameter can be entered. (You can enter more than one
parameter in the “Arguments” field; however, JavaScript will need
to sort things out.)

4 http://www.muj.comMacromedia User Journal July 1999

Table 1. Most of the properties of a Flash object are controllable from JavaScript. Notice, the bold text needs to be replaced with
explicit integers (int) or strings (str).

Telling the Flash movie to do something
Property Result Notes
Play() Plays the movie.
StopPlay() Stops the movie.
GotoFrame(int_frameN um) Jumps to a particular frame in movie. Remember to use “Play()” if you want “goto & play”.
Rewind() Rewinds the movie.
SetZoomRect(int_lef t, int_top,
 in t_right, int_bottom) Modifies the zoom rectangle.
Zoom(int_percent) Sets the zoom rectangle by percentage.
Pan(int_x , int_y , int_mo de) Pan movie by x/y pixels or percentage (if mode 0=pixels, 1=percentage)

Asking the Flash movie for information
Property Return value
TotalFrames() Integer of total frames.
PercentLoaded() Integer 0 through 100.
IsPlaying() Boolean TRUE if movie is playing (otherwise FALSE).

Telling a specific movie clip to do something (tell target)
Property Result Notes
LoadMovie(int_Level, str_URL) Loads a movie into specified level.
TGotoFrame(“flash_0/clip ”,int_frame) Goes to a specific frame in the specified clip. Remember to precede with “flash_0” (or in whatever

 level the clip exists).
TGotoLabel(“flash_0/clip ”,str_lab el) Goes to a specified label in the specified clip. See above.
TPlay(“flash_0/clip ”) Makes the specified clip start playing. See above.
TStopPlay(“flash_0/clip ”) Stops the specified clip. See above.

Asking a specific movie clip to for information
Property Return value
TCurrentFrame(“flash_0/clip ”) Integer of current frame number in the specified clip.
TCurrentLabel(“flash_0/clip ”) Current frame.

New for Flash 4:
Telling Flash
Property Result Notes
SetVariable(str_name , str_v alue) Sets a user variable to a value.
TSetProperty(“flash_0/clip ”, Sets any property of a specified movie clip to a value. See “Available properties” below to see range of
 str_pr opName, str_v alue) values for “propName”.
TCallFrame(“flash_0/clip ”, int_frame) Executes the new “call” function to effectively “go”

 to a frame in a clip by number.
TCallLabel(“flash_0/clip ”, str_fr ame); Executes the new “call” function to effectively “go”

 to a frame in a clip by name.

Asking Flash
Property Return value
GetVariable(str_name) Returns the string value of a variable.
TGetProperty(“flash_0/clip ”, int_pr opNum); Returns the integer value of a property. Notice you don’t refer to properties by string name—

 rather, the int_propNum is found on the “Available properties” list below.

Available properties
Property Code number
POS_X 0
POS_Y 1
SCALE_X 2
SCALE_Y 3
CURRENT_FRAME 4
TOTAL_FRAMES 5
ALPHA 6

Property Code number
VISIBLE 7
WIDTH 8
HEIGHT 9
ROTATE 10
TARGET 11
DROPTARGET 14
URL 15

and quite necessary when you refer to objects in other
windows.) This method should be familiar to anyone who’s
referred to different frames or windows in HTML—it’s the
same method. Of course, this (object reference) difference
doesn’t require a lot of duplicated code—just write a simple
function (like the “getObj” in Listing 1) that returns the
appropriate reference. Important note: It appears that in
Netscape, it’s much safer to refer to the Flash object by
“embed index number.” That is, instead of saying
window.document[“flashObj”], if you know the Flash object
is the first thing to be embedded, you should say:
window.document.embeds[0].

Listing 1. Since Netscape and Microsoft Internet Explorer refer to
embedded Flash objects differently, you can call this “getObj”
function every time you need to refer to the Flash object.

function getObj (whatObj)
{
var IE = navigator.appname.indexOf["microsoft") != -1;
 if{IE}
 {
 return window[whatObj}
 }
 else
 {
 return window.document[whatObj]
 }
}

http://www.muj.com 5Macromedia User Journal July 1999

As if the Netscape and IE differences weren’t funky
enough, there’s more:

• Learn to count “0,1,2,3…”: Learn to count starting with
zero. Flash calls the first frame 1, while JavaScript starts
with 0. So if you want to go to frame 1, and you’re in
JavaScript, you need to say frame 0.

• Movie clip hierarchy: Luckily, you’ll find many
properties of Flash movie objects that allow JavaScript
to talk to specific movie clips by their “instance” name.
However, you must remember to precede the instance
name with “_flash0/” (if the clip is on the stage level,
“_flash1/” for level 1, etc.). Additionally, a movie clip in
a movie clip can be accessed easily with “flash0/clip/
clipInClip”.

• Kick it! In Flash, the default for a GoTo action is
effectively “GoTo and Stop”. “GoTo and Play” requires
you to check the appropriate box. Similarly, when you
use JavaScript to GoTo a frame, you should include a
second line that gives the movie a little kick-start. The
property Play() will do the trick.

• Wait for it: There’s no way around this one… you
simply cannot talk to a Flash movie until it’s entirely
downloaded. Of course, there are strategies to deal with
this fact. If it’s the Flash movie that starts the
conversation, you can simply use the built-in “if Frame
is Loaded” action to stall until the last frame is loaded
before telling JavaScript to start talking. But often, you
want the JavaScript to tell the Flash movie something
onLoad (the JavaScript event called when the page
loads). Luckily, there is one property you can access
before the movie is entirely downloaded—
percentLoaded. Create a loop in your JavaScript that
keeps checking whether percentLoaded has reached 100
before starting to talk to the Flash movie. Use such a
loop (see Listing 2) anytime there’s any possibility the
JavaScript could be trying to talk to Flash before it’s
downloaded.

Listing 2. Although JavaScript can’t start talking to the Flash object
until it’s downloaded, you can ascertain if it’s reached 100 percent
loaded. This loop stalls until the movie has completely downloaded.

var movie_ready="false";
var theObj=getObj ("flashObj");
while (movie_ready=="false")
 {
 if (theObj.PercentLoaded() == 100)
 {
 movie_ready="true";
 }
 {
//Go on...

Workarounds
Any function that’s called directly or indirectly from a Flash
movie talking to JavaScript can’t include the simple HTML
“location.href=page.html”. It does seem to work on some
browsers, and when the “page.html” is an absolute URL
(that is, “http://www.server.com/page.html”). The
workaround is to simply set a timeout of 0 and then execute
the location function:

setTimeout("location.href='page.html'",0);

Another function that doesn’t seem to like working
within the FS Command is “window.open()”. Again, the
setTimeout function is used:

setTimeout("window.open('other.html')",0);

JavaScripters unite!
Learn JavaScript. The time spent is well worth the
investment. Macromedia is providing more and more
support to JavaScript, in the form of a yet-to-be-released Xtra
for Director to execute JavaScript, in the form of objects for
Dreamweaver and for new custom behaviors for Fireworks
(yet to be released), and, of course, in the way Flash and
JavaScript can talk to each other.

Even with Flash 4, there’s a big need for JavaScript.
JavaScript is a much more sophisticated language (multiple
data types, etc.), and it’s got a bigger user base, too. You’ll be
able to find JavaScript resources far and wide.

Plus, all of the code you create in JavaScript will be
transparent—that is, you’ll have everything sitting out in a
neat text file instead of hidden under a million little button
actions or frame actions in multiple scenes, etc. This
transparent code will translate to other languages, too.

So Flash is great, and Flash 4 is even better—but when
you reach the limit of Flash, JavaScript is there to take you
beyond what either can do alone. (You can see a fully
annotated version of the original presentation at http://
www.teleport.com/~phillip/ucon99/presentation/
presentation.html.) ▲

Phillip Kerman splits his work between doing projects and showing others

how. He writes articles, prepares and delivers courses, as well as presents at

international conferences—including the upcoming Alternative Authorware

Conference (TAAC ’99) in Orlando in October. Quite often, his role in projects

involves creating and maintaining templates, though he’s no stranger to

dredging through lots of details. He’s an expert with Director, Authorware,

and Flash. His clients also value his input on informational design and

production efficiency matters. www.teleport.com/~phillip,

phillip@teleport.com.

1-800-788-1900

