
Smart Clips

Smart Clips are a sophisticated and convenient way to encapsulate code snippets

in a form that can be shared and reused. A Movie Clip becomes a Smart Clip

when you specify the parameters that you want the author to modify in each

instance. Effectively, you’re just extending the properties by which clip instances

can vary from the built-in set of properties (such as _alpha and _xscale) to

include anything you design.

Although you might have seen very advanced examples of Smart Clips (includ-

ing those found in Flash’s Common Libraries menu or that you’ve downloaded

from the Macromedia Flash Exchange site), just because Smart Clips can be very

advanced, they don’t have to be. You can make a simple Smart Clip that serves to

automate a small portion of just one project. The most important fact to realize is

that everyone can make Smart Clips.

In this chapter, you will

• Learn all the steps involved to turn a Movie Clip into a Smart Clip

• Create adaptable parameters that the author can modify when using your
Smart Clip

• Explore some practical uses for Smart Clips including improving produc-
tivity, assuring consistency, and centralizing code

• Build Custom User Interfaces that serve to replace the generic Clip
Parameters panel with one you build in Flash

{ Chapter 13 }

15 0789 CH13 3/20/01 5:23 PM Page 283

Part I Foundation284

Before we begin this chapter, realize that Smart Clips are only used for author-

ing. After you build a Smart Clip, you can use it as many times as you want. You

can even share it with others. It makes sense to do so because you might spend a

lot of time making the Smart Clip really useful and adaptable to any situation.

Because this means there are two authors, it makes sense to refer differently to

the author who builds the original Smart Clip and the “using author” (that is, the

person using a finished Smart Clip while building a Flash movie). After you

build a Smart Clip, you could become the using author. In this chapter, I will

refer to them differently—an author and a using author.

Standard Smart Clips

In Chapter 7, “The Movie Clip Object,” you learned how to think of variables

contained inside clip instances as homemade properties because you access and

change them using the same syntax (clip.property or clip.variable). This

concept will help when creating Smart Clips. The process involves specifying

which clip variables (homemade properties) can be initialized through the Clip

Parameters panel. Each Smart Clip instance can also have a unique starting value

for any of these variables, just as each instance of a clip can have different start-

ing values for any built-in property. Call them parameters, variables, or home-

made properties—they’re all the same, and with Smart Clips they’re adjustable to

the using author (see Figure 13.1).

Figure 13.1 The author can specify variables uniquely for every instance of a Smart

Clip by using the Clip Parameters panel.

15 0789 CH13 3/20/01 5:23 PM Page 284

The process of using a Smart Clip is simple: drag an instance onstage and set the

initial values for the variables in the Clip Parameters panel. Then when the movie

plays, it’s as though each instance has a different onClipEvent(load) event to

assign the values for each variable uniquely for each instance. What’s the point?

You could just write an onClipEvent(load) script for each instance, and you

could avoid Smart Clips altogether. The problem, however, is that it’s a lot more

work and the process is less intuitive. (For example, you’d have to remember to

include assignments for each variable.) Plus, a true Smart Clip lets you take

advantage of the Clip Parameters panel and its description field (shown previ-

ously in Figure 13.1).

In addition to providing an error-resistant method for the using author to specify

parameters, you can include the same base of code (through the master symbol in

the Library) in Smart Clips. In this way, you can write one block of code that

behaves differently depending on the values of the variables that have been ini-

tialized through the Clip Parameters panel. For example, the Smart Clip could

contain Dynamic Text fields of a specific font and layout. If the values for the

text field variables are specified in the Clip Parameters, each instance will display

different text, but the font and layout will remain the same. Plus—just like any

Movie Clip—if you make a change to the master in the Library (say that you

change the font in the Dynamic Text field), you’ll see that change in every

instance. In this way, a Smart Clip can serve to establish consistent text styles.

Another simple example is a clip with an animation of a ball bouncing. The ball

will bounce as many times as the using author specifies for the bounceCount

variable. They could have several instances of the same Smart Clip, but each

would bounce a different number of times.

Let’s first look at a couple basic Smart Clips and then we’ll look at more

advanced practical examples.

Making Smart Clips

Similar to a lot of programming, sometimes it’s best to start by hard-wiring a

prototype and then come back to clean up things, which makes the code more

adaptable. Let’s first go through some (non-Smart Clip) solutions to making

individual clips behave differently.

Chapter 13 Smart Clips 285

15 0789 CH13 3/20/01 5:23 PM Page 285

Solutions That Don’t Use Smart Clips

First, consider a Movie Clip with a 20-frame animation. In the last frame, place a

script that reads

loopsRemaining--;
if (loopsRemaining) {
gotoAndPlay (1);

} else {
gotoAndStop (1);

}

(We’ll keep this script for a few examples.) The first line of this decrements

loopsRemaining by 1. Assuming that the variable loopsRemaining is initialized

with a value greater than 0, this script will cause the clip to keep looping until

loopsRemaining is reduced down to 0. Remember, if loopsRemaining is zero the

condition is false, so it goes to the else part where gotoAndStop(1) executes. You

can place two instances of this clip onstage and simply use the following script

on each instance (not in the clip, but on the instance):

onClipEvent (load) {
loopsRemaining=3;

}

Just change the value to which you’re assigning loopsRemaining in each

instance, and they’ll repeat a different number of times.

So far, we don’t have a Smart Clip and we can see it’s slightly difficult to go

through writing the onClipEvent script on each instance. Consider that you

might not even need a Smart Clip but the preceding script is too difficult to trust

all your using authors to execute—a Smart Clip would be more fool proof.

Another (less than ideal) solution would be to first remove the entire

onClipEvent (previous), name each instance (say ball_1 and ball_2), and then

from the first frame in the main movie, use a script such as this:

ball_1.loopsRemaining=3;
ball_2.loopsRemaining=5;

We still don’t have a Smart Clip, and you can see this technique has its faults

(namely, you have to name each instance and type the preceding script without

error).

Part I Foundation286

15 0789 CH13 3/20/01 5:23 PM Page 286

Finally, remove the script in the first frame so I can show you one other non-

Smart Clip solution. Actually, this solution is not too bad although it’s a lot of

work. It also lets us explore a clip property that hasn’t been mentioned previously

(_name). In the first frame inside the master movie clip, we can write the follow-

ing script:

loopsRemaining=_name;

Translated, this says “set loopsRemaining to the instance name of the clip I’m

inside.” To use this solution, you’ll have to name the clips with names such as

“1” or “2”. Plus, you’ll have to change the script in the last frame to “go to”

frame 2 (not 1). Otherwise, loopsRemaining will keep getting reassigned with

the previous script. To get around the first problem, you could use a naming con-

vention such as “ball_1” and use a String method such as

loopsRemaining=_name.subStr(5) to extract just the portion of the name you

need. Obviously, this is beginning to be a pain and has definite drawbacks like

how we can’t really use the first frame inside the clip and how we have to be

careful what we name the instance.

Your First Smart Clip

Smart Clips offer the same basic features explored in all the preceding solu-

tions—but we want the using author to specify the value for loopsRemaining in a

very controlled and easy manner (that is, through the Clip Parameters panel). It’s

really quite simple to convert this clip into a Smart Clip. A Movie Clip becomes

a Smart Clip when you Define Clip Parameters. If you first select our Movie Clip

that uses the loopsRemaining variable and then choose Define Clip Parameters

from the Library’s Options menu, you’ll be faced with the dialog shown in

Figure 13.2.

From the Define Clip Parameters dialog, you can use the plus button to add vari-

ables that will be set-able by the using author. For this example, we’d simply

press the plus button once and then double-click the “varName” that appears in

the Name column and type loopsRemaining. Under the Value column, we’d

double-click to replace “defaultValue” with 1 (meaning that if the using author

never bothers to access the Clip Parameters panel, 1 will be used by default).

Finally, leave the Type column in its default setting—meaning that the data type

for this variable will be string or number. (We’ll look at the other options in a

minute.) That’s all you need to do, but I want to mention a couple of other

options in this dialog before we move on.

Chapter 13 Smart Clips 287

15 0789 CH13 3/20/01 5:23 PM Page 287

Figure 13.2 The Library’s Define Clip Parameters lets you specify which variables

will be set-able in the Smart Clip.

Normally, we want the using author to only change the values of variables, not

variable names. The Lock in Instance option will prevent the using author from

changing the name of the variables being edited through the Clip Parameters

panel. Although I can’t think of a practical reason for letting them change the

name of a needed variable, unchecking Lock in Instance will also allow them to

add variables through the Clip Parameters panel that provides an effective alter-

native to the onClipEvent(load) option I showed earlier.

Another option worth checking out is the Description field. Into this field you

can write up a concise explanation of how to use the Smart Clip. It’s a good idea

to include information as to how to set each variable. For example, you could say

something like “Use the loopsRemaining variable to specify the number of times

you want the animation to loop.”

Finally, we’ll return to the Link to Custom UI feature later in this chapter when

we use a Flash movie to replace the Clip Parameters panel.

By simply adding at least one variable through the Define Clip Parameters dia-

log, our Movie Clip turns into a Smart Clip evidenced by the new icon in the

Library and the fact that the Clip Parameters panel is usable (see Figure 13.3).

Part I Foundation288

15 0789 CH13 3/20/01 5:23 PM Page 288

If you drag three instances of this Smart Clip onstage, you can then set

loopsRemaining for each one individually very quickly and easily through the

Clips Parameters panel. (Be sure that your edits are accepted by clicking the

stage after entering a value in to the Clip Parameters panel; otherwise if you test

movie, the last saved value might be used instead.)

Chapter 13 Smart Clips 289

Figure 13.3 When a Movie Clip turns into a Smart Clip, its icon changes in the

Library (as shown in the second one listed).

A Practical Example

Let’s quickly build another simple Smart Clip as a quick review and so that you

can see a more practical application: a template. Layout two Dynamic Text fields

with placeholder text: one for a title and one for a subtitle. Make sure that the

margins are wide enough to accommodate any likely content and pick a nice type

face. Make sure that the title is associated with a variable title and the subtitle

with a variable subTitle (Figure 13.4).

Select both blocks of text and convert them a Movie Clip symbol (F8). Confirm

that the layout is satisfactory and use the Info panel to notate the x and y coordi-

nates (making sure to use the center point indicated by a black box in the Info

panel). Go inside the clip you just created and, in the first keyframe, use the fol-

lowing script to specify the initial location for the clip:

_x=150;
_y=229;

15 0789 CH13 3/20/01 5:23 PM Page 289

Figure 13.4 The first Smart Clip we build will include Dynamic Text fields that we

associate to variables.

(But use whatever values you found through the Info panel.) Finally, we can

make this a Smart Clip by Defining Clip Parameters. Just add title and

subTitle to the name column for parameters. That’s it! Anyone can now drag an

instance onstage and define the content through the Clip Parameters panel, and

the layout will be perfectly consistent. You can even make a global edit to the

layout or font style by editing the master symbol. All the instances in use will

retain their values for title and subTitle. (By the way, you’ll need to test

movie in order to see anything except your placeholder text in the two fields.)

Other Data Types

Before we move on to some advanced examples of Smart Clips, let’s quickly

explore the alternatives to the Default data type found when Defining Clip

Parameters as shown in Figure 13.2, earlier in the chapter. The other data types

are Array, List, and Object.

When you want the using author to populate the clip’s variables with strings or

numbers, just leave the option set to Default. However, as you know by now,

other data types can come in handy. For example, you might want to let the using

author set a single variable to an array. When you Define Clip Parameters, you

simply specify that a particular variable shall be an Array. At that point, you can

populate the array with default values by double-clicking on the field in the Value

column. What’s interesting about the Array type is that when the using author is

populating the variable with values, he not only can change the default values

you provided, but also he can add items to the array. None of the other data types

(Default, Object, and List) let the using author add. A great example in which

Array is a good choice is the Menu Smart Clip that ships with Flash (found

under the menu Window, Common Libraries, Smart Clips). The using author is

Part I Foundation290

15 0789 CH13 3/20/01 5:23 PM Page 290

allowed to add as many items to the menu (which is to say, he’s allowed to add

items to the array).

When you want to give the using author a choice of several discrete options,

select List. That is, Default lets him type anything he wants; Array not only lets

him type anything, it lets him add items; but List only lets him select from a pre-

defined list. For example, if you want to provide a choice of music genres but

don’t want the using author to type in just anything, you can instead offer a list

of just Classical, Country, Rock, Jazz. In the Value column, you simply fill in

what the options should be, and the using author can only select from a drop-

down list. If you want something other than the first item—the zero spot—to be

selected by default, provide an “offset” (see Figure 13.5).

Chapter 13 Smart Clips 291

Figure 13.5 Creating a “list” variable when defining Clip Parameters (left) gives the

using author a limited choice (in the drop-down list on the right) when using the Clip

Parameters panel.

Finally, the Object type is convenient when you know that the variable used in

your clip needs to be in the form of a generic object. Remember, generic objects

are unique and hard-wired. We built generic objects to be passed as parameters in

the setTransform() methods for the Sound and Color Objects in Chapter 11,

“Objects,” and they’re the same as Associative Arrays (discussed in Chapter 10,

“Arrays”). It’s simply a data type that has multiple named properties (accessible

15 0789 CH13 3/20/01 5:23 PM Page 291

either by variableName[“propertyName”] or variableName.propertyName).

Unlike the Array type, the Object type requires that you define the properties so

that the using author simply defines the values for each property. In fact, you

could just provide the using author several separate variables (all of the Default

type), and then once inside the clip (say, in the first keyframe) write a script that

builds an object by assigning properties based on the values provided. Selecting

Object simply prevents the need to translate individual variables and instead cre-

ates a single variable with multiple properties (that is, an object).

As a quick review, we’ve seen that a Smart Clip is simply a Movie Clip for

which the Define Clip Parameters option was used to specify clip variables that

the using author will be able to manipulate. One would suspect that you’ll be

using those variables somehow inside the clip—such as within a Dynamic Text

Field or in a script that utilizes the value of the variable. Each instance is unique

in all the ways the different clip instances can be unique; but, in addition, the

using author can change the value of all variables listed in the Clip Parameters

panel. In this way, the using author makes each instance of a Smart Clip behave

differently because each instance will start off with different values for all its

variables.

Advanced Applications for Standard Smart Clips

Although the earlier example of using a Smart Clip like a template to impose a

consistent font and layout for text was indeed practical—it was quite simple.

Other practical examples aren’t quite as simple. I’m going to call the following

examples “standard” Smart Clips (not simple) because they don’t involve the

more advanced feature called custom UIs. A custom UI (which stands for User

Interface) replaces the Clip Parameters dialog (and its rigid looking name and

value columns) with a Flash movie that you have to build. It’s the job of this

other Flash movie (the UI) to set the necessary variables, but it can do so in a

very graphic way. We’ll make some in the next section, but I want to first show

some advanced examples of the standard form. You don’t need to try to follow

along as we explore some of the possibilities.

In the Horizontal Slider workshop you’ll build a slider that lets the user (not just

the using author) interact by dragging it from 1 to 100 (as shown in Figure 13.6).

After we build a somewhat hard-wired version, we turn it into a Smart Clip to

allow the using author to specify four properties: the location of 1 (that’s the

Part I Foundation292

15 0789 CH13 3/20/01 5:23 PM Page 292

minimum location for the slider), the location of 100, the initial location (so that

the slider can default to a point other than 1), and the name for a function that the

slider will continually call as the user slides the slider. Using a function makes it

possible for the slider’s value to be used to modify anything onstage—from

another clip’s alpha level to the overall sound level. This kind of function that a

Smart Clip calls (back in the main movie) can be referred to as a call back func-

tion.

Chapter 13 Smart Clips 293

Figure 13.6 In a workshop later, we’ll turn a slider into a Smart Clip so that it can be

reused.

In the Tool Tip workshop, we build a Smart Clip where the using author can

specify the exact string of text that should appear (when the cursor rolls over

another object). The using author can drag as many instances of this Tool Tip

Smart Clip as he wants.

Finally, here’s an example of a Smart Clip I built for use in a real project. I used

Flash in a presentation, but wanted another version (that the audience could

download) that included speaker notes. The content for the notes would be

loaded in from an external file (as you’ll learn in Chapter 14, “Interfacing with

External Data”) because it wouldn’t be written until later—plus I wanted to be

able to modify it any time. Anyway, I made a Smart Clip not unlike the tool tip

described previously, but instead of making the using author (me) specify all the

text, I simply specified the section and subsection where it was being used. The

loaded data included details as to which section and subsection it applied to, so

my Smart Clip simply displayed (similar to a ToolTip) the data appropriate for

that section. The result was that users can view the presentation and optionally

click a Speaker Notes button to see additional information (see Figure 13.7).

15 0789 CH13 3/20/01 5:23 PM Page 293

Figure 13.7 In an actual project, I made a Smart Clip to display the appropriate

speaker notes.

Although these examples are not the only things possible with standard Smart

Clips, I just wanted to make a point that you often don’t need to build

custom UIs.

Replacing the Clip Parameters Panel with
Custom UIs

One of the most intriguing features of Smart Clips is the fact that you can assign

an interactive Flash movie to play inside, and effectively replace, the Clip

Parameters panel. The process involves first building a Flash movie, exporting it

as a .swf, and finally pointing to the .swf through the Define Clip Parameters

dialog. You’ll have two files: an .fla file with the master Smart Clip in a Library

and a .swf that plays inside the Clip Parameters panel. The .swf is called a cus-

tom UI and its filename is specified in the Link to Custom UI field shown in

Figure 13.8.

By replacing the Clip Parameters panel, we have the opportunity to make some-

thing more usable. But most Smart Clips are perfectly suitable without a custom

UI. So instead of leaping straight into building custom UIs, we’ll first look at

how to design them so that we’re sure to use them appropriately. You’ll see that

custom UIs can be difficult to build—so it makes sense to make sure that they’re

necessary.

Part I Foundation294

15 0789 CH13 3/20/01 5:23 PM Page 294

Figure 13.8 The Link to Custom UI field points to an external file that will be used in

place of the Clip Parameters.

Designing Custom UIs

Naturally, the process of creating a custom UI is purely technical. To make a

good custom UI is another matter. I think it’s fair to say that the only time to cre-

ate a custom UI is when the built-in Clip Parameters panel is inadequate. There

are many situations in which this could occur. For example, making the using

author set several variables through the standard Clip Parameters panel could be

unreasonably tedious. In this case, an easier solution might be a graphic selection

device such as a slider (see Figure 13.9). Or maybe you want to give the using

author a taste of the selections he’s making. If he’s picking several colors, it

might be nice to give him a preview so that he can visualize the results. Or, if

he’s selecting sounds, you could include a short audio sample. Finally, a perfect

situation for a custom UI is when there is a series of complex selections the using

author must make. For this case you could build a custom UI that served as a

wizard—walking the using author through all the steps involved and even provid-

ing online help where appropriate. A good example of this approach can be

found in the Smart Clips included with Flash’s Learning Interactions (under

Window, Common Libraries).

Chapter 13 Smart Clips 295

Filename of custom UI

15 0789 CH13 3/20/01 5:23 PM Page 295

Figure 13.9 A slider is just one graphic interface element possible to include in a cus-

tom UI.

After you’ve determined that a custom UI is appropriate, you can take steps to

design how it will function. The most important consideration is usability.

Because the purpose of the custom UI is to provide some benefit not found in the

standard Clip Parameters panel, you should make sure to make it easy for the

using author. I suppose if you’re building a Smart Clip for your own use, you can

invest less time designing (at the expense of usability).

As it turns out, one of the most critical features that will make your custom UI

more usable happens to be one of the most difficult to program. It’s important for

the custom UI to always indicate the current settings. For example, every button

should include a highlight to indicate selected. This highlight should not only

provide a clear indication at the time a selection is made, but also the using

author should be able to return to the Clip Parameters and easily ascertain the

current setting. After all, they might have several instances of the Smart Clip and

want to check each one’s settings. This round-trip feature (being able to leave

and come back to a Smart Clip) is the difficult programming task. You’ll see how

to program it in the next section, but realize that it’s also a matter of design how

you choose to treat the graphic solution. Ultimately, making an intuitive custom

UI takes more skill and creativity than simply programming it.

Building Custom UIs

Assuming that you’ve determined a custom UI is really necessary and you have a

decent design, you can move on to really building it! First let’s make a very sim-

ple one and then add some features. The concentration of this example is on

making the custom UI, but we’ll need a Smart Clip for whom the custom UI sets

properties. You can use the simple bouncing ball Movie Clip used earlier. You’ll

want to create a file (maybe called host.fla), make sure it’s saved, and then

place this script in the last frame of the Movie Clip:

Part I Foundation296

15 0789 CH13 3/20/01 5:23 PM Page 296

loopsRemaining--;
if (loopsRemaining) {
gotoAndPlay (1);

} else {
gotoAndStop (1);

}

The job of our custom UI will be to set the loopsRemaining variable. (Arguably,

this Smart Clip doesn’t really need a custom UI, but we’re just doing it for prac-

tice.) Make sure that your Movie Clip is a Smart Clip by using Define Clip

Parameters to specify that loopsRemaining is set-able by the using author.

Finally, type myUI.swf in the Link to Custom UI field. You can also click the

folder button and point to a file. However, besides the fact that we haven’t made

the UI yet, this feature always produces an explicit path where—for most situa-

tions—the relative path we typed in is more desirable. (By the way, in a work-

group situation, you could keep the custom UI in an explicit path on a server for

everyone to share.)

Create a new file and save it as myUI.fla in the same folder as the host file.

Finally, we can program it. Because we’re basically replacing the standard Clip

Parameters panel, we need to do what it was doing: setting variables. The only

catch is that the variables that get exchanged with the host movie’s Smart Clip

need to reside in a movie clip that has an instance name of xch. You can have

other variables in the UI file, but only the ones in the clip xch will become part

of the Smart Clip in the main movie. This clip instance doesn’t need anything

graphic; it serves only to hold the variables that get used in the main movie.

Although you can think of the xch clip as a surrogate of the actual Smart Clip, it

doesn’t need to have any correlation (in looks or function) to the Smart Clip—

only that it contains the necessary variables.

We can make the fastest custom UI in history by creating an Input Text field

associated with the variable loopsRemaining and then selecting the text block

and converting to the Movie Clip symbol. Finally, just make the movie clip’s

instance name xch and export the movie as myUI.swf in the correct folder. Go

back to the host movie and test it out by dragging two instances of the Smart

Clip. Through the Clip Parameters panel you should see the Input Text field

where you can specify a number of loops. Also, notice that you can keep the Clip

Parameters panel open when you alternatively select the two Smart Clip

instances onstage. Each should retain its loopsRemaining value. Pretty easy

really.

Chapter 13 Smart Clips 297

15 0789 CH13 3/20/01 5:23 PM Page 297

Even if we try to spice it up with gratuitous effects (such as maybe text color),

this custom UI is pretty simple. Let’s change it so that we can encounter some-

thing more challenging. You can keep the xch clip—but change the text field to

Dynamic Text (so that the user can’t edit it). Make a button and create four

instances in the main timeline lined up vertically. Place the following script in

each button (changing the 1 to 2, 3, 4 for each button, respectively):

on (release) {
pickLoop(1);

}

Now in the first keyframe of the main timeline, type this function:

function pickLoop(whatNum){
_root.xch.loopsRemaining=whatNum

}

This achieves the task of changing loopsRemaining to whatever value is passed

from the buttons that call pickLoop(). You can export the .swf, and it should

work. However, when you test this from the host movie (the place where you

should be testing this), there are two significant problems. Upon making a selec-

tion, the user is not given any graphic feedback as to which button was pressed.

The other problem is when a user returns to view the current setting in a Smart

Clip—he has no clue what the value is for loopsRemaining. We can produce a

highlight on the currently selected button by creating another movie clip in the

main timeline and calling the instance arrow. Then we just need a script in the

pickLoop function to change the _y property of arrow. If the spacing is consis-

tent, you could use a formula such as

arrow._y=46+75*(whatNum-1);

where 46 was the location for the top button and each button was 75 pixels apart.

Or—in conjunction with an array full of discrete y locations—you could use an

expression such as

var locs=[46,121,196,271];
arrow._y=locs[whatNum-1];

Each solution moves a clip instance (arrow) to point to the last button clicked—

and the time to do this is inside the pickLoop function.

Part I Foundation298

15 0789 CH13 3/20/01 5:23 PM Page 298

At this point, the custom UI should function as far as indicating a selection after

you make it, but it still fails to appear with arrow in place upon returning to a

previously edited Smart Clip instance. All we need to do is place the following

script in an appropriate keyframe so that it executes every time a using author

returns to edit the Clip Parameters:

pickLoop(_root.xch.loopsRemaining);

Basically, this script sends the current value of loopsRemaining (which is in the

xch clip) to the pickLoop function. The problem with our custom UI is not that

loopsRemaining is being lost (if you test it, you’ll find that it is still there); but

rather that the value of loopsRemaining is unknown when returning to the clip.

However, if you place the preceding script in the first frame, it won’t work! The

issue is that Flash needs some time to send the variables from a Smart Clip

instance to the Clip Parameters panel and then to your custom UI. The solution is

to move everything in your custom UI out past frame 10 or so, and then invoke a

function call (similar to the previous). One little catch is that the xch clip must be

present in the first frame! The way I remember this rule is to imagine the Clip

Parameters panel is attempting to set the variables that are part of the xch clip.

Just like how any script can only set variables for clips that are currently present,

the xch clip must be present at the very start so that the Clip Parameters panel

can set the variables. I’m not sure if that’s really the reason, but I simply place

the xch clip in its own layer and make sure that it starts on frame 1. Actually, this

is the best reason to consider not putting any graphics or buttons in the xch clip

itself as you don’t want the user interacting until everything is reinitialized.

The arrangement I’d recommend is as follows (and this will work for the previ-

ous exercise):

1. Place your dummy xch clip in frame 1 on its own layer.

2. In frame 1 of your xch clip’s layer in the main timeline, place all the func-
tions (such as the pickLoop function).

3. Make a new layer just for Actions, and in frame 10 make a keyframe that
contains the reinitializing script (pickLoop(_root.xch.loopsRemaining)).

4. On frame 11, place a stop() script.

5. Place all your interactive elements (buttons for example) on frame 11.

6. Use the first 10 frames to display a “loading” message or an animation that
serves to placate the using author who must wait for the reinitializing to
occur.

Chapter 13 Smart Clips 299

15 0789 CH13 3/20/01 5:23 PM Page 299

Notice that you want to make sure that the user cannot interact while the custom

UI is initializing, and that’s why no buttons appear until frame 11. (Your loading

message occurs before that.)

Although this example is admittedly simple, a more complex custom UI will

have the same elements. You always need a clip named xch that holds the vari-

ables to be set in your Clip Parameters panel. And, unless your only means for

the user to see his current settings is a text field, you’ll need to initialize such

highlights somewhere other than the first frame (I think frame 10 is a safe bet).

After you understand these minimum features, you can move on to making more

complex Smart Clips and custom UIs.

Keep in mind that the goal for any good Smart Clip (and custom UI, if needed) is

to be something useful: for instance, a code snippet that can be used over and

over. Although something that’s particularly useful is worth investing time and

effort to make it right, every Smart Clip is not necessarily hard to create. In prac-

tice, I’ve found that the majority of Smart Clips are built on a per-project basis.

That is, you might need a special Smart Clip that’s used throughout one Flash

movie. As you saw early in this chapter, Smart Clips can be used as simple tem-

plates or style guides. A large number of the workshops later in this book involve

creating Smart Clips because I want the code to be more usable. It turns out the

Smart Clips we build won’t have universal appeal: only that making it a Smart

Clip means that the code is just a bit more adaptable.

If you do build a Smart Clip with a wide general appeal, you can share it with

the Flash community. In Appendix B, “Making Flash Extensions for the

Macromedia Exchange Web Site,” you’ll see how easy it is to turn a Smart Clip

into a Flash Extension that can be downloaded from the Macromedia Exchange

Web site (http://www.macromedia.com/exchange/flash/).

Summary

This chapter turned out to be more like a workshop and less like many of the ear-

lier foundation chapters. That’s because Smart Clips are more a feature of Flash

than a language element of ActionScript. The only new concept was the “list”

data type—which isn’t really a data type but just another feature of the Define

Clip Parameters dialog.

Part I Foundation300

15 0789 CH13 3/20/01 5:23 PM Page 300

The concepts you learned in this chapter included how Smart Clips allow you to

give the using author the ability to set initial values for any property, variable, or

homemade property you specify. When you Define Clip Parameters, the Movie

Clip magically turns into a Smart Clip. From that point forward, each instance

onstage maintains its own values for the designated properties. The using author

can change individual instance properties through the Clip Parameters panel (not

to be confused with the Define Clip Parameters dialog in which you establish the

properties that are set-able). Finally, if you go through the work to build a custom

UI, you can use this Flash movie to effectively replace the Clip Parameters panel.

If you’re left with any confusion as to the value of Smart Clips, don’t worry. In

the workshop portion of this book, you’ll make plenty of them. It’s not so much

that you sit down and decide, “Today I’m going to make a Smart Clip.” Rather,

you can build some code and then say, “Hey, this would be way better as a Smart

Clip because it would be adaptable for multiple instances.”

Chapter 13 Smart Clips 301

15 0789 CH13 3/20/01 5:23 PM Page 301

