
Objects

If you’ve gotten this far in the book, you’ve seen objects in several places.

Instances of movie clips are the most basic type of object in Flash, and the best

to learn from as you can see them onscreen. You’ve also seen several of the

scripting objects (namely, Math, String, Array, Selection, and the Key object).

Although you’ve already learned a lot about objects, there’s more!

The objects introduced in this chapter are not only particularly practical, but also

they all require the formal rules of objects such as instantiation. In this way, they

make previously explored objects seem very forgiving in comparison, because

you’ll be doing things that were never required in the other objects. Luckily,

these objects are well worth the additional effort.

In this chapter, you will

• Learn the rules of these formal objects

• Use the Sound object to “attach” sounds that can be manipulated using
scripts

• Use the Color object to tint clips on-the-fly

• Use the Date object to perform any imaginable calculation involving calen-
dars or time

• Use the AttachMovieClip statement to effectively drag clips from the
Library using ActionScript

{ Chapter 11 }

13 0789 CH11 3/20/01 3:49 PM Page 237

Part I Foundation238

Formal Rules of Objects

Most of these concepts will appear familiar. For example, by now you know that

objects have properties, which are basically just variables that contain data. Some

properties have visual representations, such as a clip’s _alpha property for exam-

ple. Although the value for this property can be ascertained (as in

theClip._alpha) and changed (as in theClip._alpha=10), some properties can

be ascertained only. The set of properties for any object type is specific to the

object. For instance, only the Movie Clip object has an _alpha property. Other

objects have other properties—but they’re all the same in that they contain values

that can, sometimes, be modified.

In addition to properties, objects can have methods, which are functions that are

applied to unique instances of an object. Methods are processes, whereas proper-

ties are just static attributes. So far, this should be a review. The concept that’s a

little bit new is that formal objects must be instantiated. In the case of clip

instances (that is, Movie Clip objects), you simply instantiate them by dragging

them from the Library. After each object has been instantiated, it has its own

unique set of properties and the potential to have methods, such as nextFrame(),

applied to them individually. The formal objects require that you instantiate them

using a constructor function. All constructor functions follow this pattern:

new Object();

For this chapter we’ll see the following constructor functions that instantiate dif-

ferent formal object types:

new Sound();
new Color();
new Date();

(By the way, instantiating a new movie clip using ActionScript during runtime

uses a different technique that’s discussed in the “Attach Movie Clip” section

later.)

The key to remember with instantiating objects is that you must store the object

in a variable, so saying new Sound() doesn’t really do anything. However,

mySound=new Sound() creates a new instance (in the form of the Sound object)

and places it into the variable mySound, whose value is of the object data type.

From this point forward, you can treat mySound like any object, referring to prop-

erties (mySound.someProperty) or using methods (such as

mySound.someMethod()) in the same way you would treat a clip instance.

13 0789 CH11 3/20/01 3:49 PM Page 238

Until you build your own objects, that’s about all there is to it. The trick is that

you must instantiate an object and place it in a variable before you can start

doing stuff with it or doing stuff to it. Now we can see the nitty-gritty details of

four objects.

Attach Sound

This section probably could be called “The Sound Object.” However, if there’s

one step that’s easy to forget when using the Sound object it’s the attach sound

step, so maybe the section title will help you remember. Here’s the process you

take in order to use the Sound object.

Sound Object Basics

The idea is that by using ActionScript, you will effectively drag a sound out of

the Library and start using it in your movie. Items in the Library that aren’t used

anywhere in your movie normally don’t export when you publish your movie

(which is a good thing considering that unnecessary sounds will especially add to

the filesize). After you import the sound you intend to “attach” into the Library,

you’ll need to override the no-export feature by setting the Linkage in the

Library’s option menu (as in Figure 11.1).

Chapter 11 Objects 239

Figure 11.1 A sound item is set to export (and given an identifier name) through the

Library’s Linkage option.

All you need to do is select Export This Symbol and give it a unique identifier

name (I’ll use “soundItem” for my examples). Although we won’t do it here, you

can also Import This Symbol from URL but that requires you to build a shared

library (a subject covered in my other book, Sams Teach Yourself Flash 5 in 24

Hours). In addition to causing your exported movie’s filesize to grow, this sound

will now download before subsequent frames load.

13 0789 CH11 3/20/01 3:49 PM Page 239

Now that we have a sound identified, we can start coding. You first instantiate a

sound object and place it in a variable (I’m using mySound):

mySound=new Sound();

Before you can start using the Sound object methods shown in Figure 11.2, you

need to attach the sound to this object.

Part I Foundation240

Figure 11.2 The list of Sound object methods is short but they’re powerful.

The attachSound method lets you specify which sound (in the Library) you want

to associate with this object.

mySound.attachSound(“soundItem”);

Notice that “soundItem” matches the name we gave the imported sound in the

linkage settings. At this point, we can now start playing with the other methods.

You’ll likely want to start the sound so that you can hear all the changes you

might make to the sound later.

mySound.start();

This will start the sound playing from the beginning of the sound file. Two

optional parameters are included in this method. If you want to cut in and start

13 0789 CH11 3/20/01 3:49 PM Page 240

the sound (not at the beginning), you can specify the number of seconds into the

sound that you want to begin. That is, mySound.start(10) will start the sound 10

seconds in from the start. (Of course you shouldn’t use this to skip past silence at

the beginning of your sound: Any silence should have been removed before

import as it adds unnecessarily to the filesize.) The second optional parameter

lets you specify how many times the sound should loop. To make a sound play

almost continuously, use mySound.start(0,9999999). Notice that you still need

something in the first parameter that specifies the delay until start time in order

to use the second parameter.

The opposite of start() is obviously stop(). Use mySound.stop() to stop the

sound. This is not “pause” in that if you later use mySound.start(), it will start

over from the beginning. There are only a few other methods (shown in Figure

11.2), so let’s look at them all.

Advanced Sound Controls

Although starting or stopping a sound isn’t really fancy, you’ll likely need to at

least start a sound before using the other methods. While a sound is playing you

can easily adjust its volume using mySound.setVolume(level) where “level” is

an integer between 0 and 100. Effectively this is a percent of the volume the user

has her computer system and speakers set to. That is, mySound.setVolume(100)

will play the sound at the full 100% of the user’s computer settings. Conversely,

mySound.setVolume(0) will make the sound silent. Keep in mind that

setVolume(0) is different from stop() because the sound continues to play but

at a volume of 0. The default sound level is 100 and then you can lower it using

setVolume(). If you ever need to ascertain the current level, just use

getVolume().

In addition to changing the volume, you can use pan to affect the balance

between the left and right channels. Similar to the way a camera can pan left and

right, you can cause the sound to seem to originate from the left or right. The

setPan() method accepts a parameter ranging from -100 (to pan all the way to

the left) to 100 (to pan right). When the sound is sent to both speakers equally,

the pan is 0. So, when a sound is playing, you can use mySound.setPan(-50) and

it will sound as if your audio has moved to the left. You can actually set the pan

(as you can set the volume) even when a sound isn’t playing, but you’ll always

need a Sound object on which to use the setPan() method. If you ever need to

ascertain the current pan use getPan().

Chapter 11 Objects 241

13 0789 CH11 3/20/01 3:49 PM Page 241

Finally, the last Sound object method is called setTransform() (and its sister

getTransform()). On the surface, this method appears very similar to setPan()

because it controls how much sound is going to each channel. But it’s actually a

combination of setting the volume, setting the pan, and exactly which portion of

the audio goes to each speaker. There are four factors that you specify when

using the setTransform() method: how much left channel sound you want going

to the left speaker (referred to as ll and ranging from -100 to 100); how much

left channel is going to the right speaker (lr); how much right is going to the

right speaker (rr); and how much right is going to the left speaker (rl). Through

this method you have very fine control. By the way, all this changing of volume

and pan actually overrides settings previously made through the setVolume() and

setPan() methods.

Now for the funky part. Specifying the four settings (ll, lr, rr, and rl) would

probably be easiest if you simply provided four parameters when invoking the

setTransform() method. But it doesn’t work that way. Instead, setTranform()

accepts a single parameter in the form of another object that has four properties.

The process involves first creating a generic object in a variable, setting the four

properties (ll, lr, rr, and rl), and finally passing that variable (data type

“object”) as the parameter when calling setTransform(). Here’s how you might

do it:

transObj=new Object();
transObj.ll=100;
transObj.lr=0;
transObj.rr=100;
transObj.rl=0;
mySound.setTransform(transObj);

This script effectively sets the balance equal (left going to left and right going to

right are both 100).

This assumes that mySound is already instantiated (and playing if you want to

hear anything). After you have the variable (transObj in this case) that contains

an object, you can change any of its four properties and then invoke the last line

(mySound.setTransform(transObj)) to hear that change. Assuming that the

transObj exists, you can send all the left channel’s audio to the right speaker

(and vice versa) by using the following code:

transObj.ll=0;
transObj.lr=100;
transObj.rr=0;

Part I Foundation242

13 0789 CH11 3/20/01 3:49 PM Page 242

transObj.rl=100;
mySound.setTransform(transObj);

To make a stereo sound play as if it were mono, use this code:

transObj.ll=50;
transObj.lr=50;
transObj.rr=50;
transObj.rl=50;
mySound.setTransform(transObj);

Translated, this code says send half the left channel’s sound to the left channel,

and the other half to the right. Then send half the right channel’s sound to the

right and the other half to the left. The result is all sounds are evenly distributed

to both speakers and it sounds mono.

Finally, if you need to ascertain the current transform, use getTransform(). The

only tricky thing is that this returns another object. If you want to then specifi-

cally target one of the four properties, you can by using the dot syntax techniques

of which you’re so familiar. For example, to find out what percent of the left

channel is going to the left speaker, use mySound.getTransform().ll. If you

don’t want to keep calling the getTransform() method, you can use code such as

the following:

curTrans=mySound.getTransform();
trace(“Left speaker is playing “+ curTrans.ll + “% of the left channel”);
trace(“Right speaker is playing “+ curTrans.lr + “% of the left channel”);
trace(“Right speaker is playing “+ curTrans.rr + “% of the right
channel”);
trace(“Left speaker is playing “+ curTrans.rl + “% of the right channel”);

Controlling Multiple Sounds

I left out an optional parameter when first introducing the Sound object construc-

tor function (new Sound()). Think of the parameter as the way to attach a sound

to an instance. Then that instance and attached sound is independently control-

lable just like any other property of that clip. If you provide a reference to a

movie clip as the parameter, the sound will be independently controllable.

Otherwise all sound objects’ volume will be the same. For example, here’s how

you can start playing two sounds and then control their respective volume levels:

sound1=new Sound(clip1);
sound1.attachSound(“music”);

Chapter 11 Objects 243

13 0789 CH11 3/20/01 3:49 PM Page 243

sound1.start();
sound2=new Sound(clip2);
sound2.attachSound(“narration”);
sound2.start();
sound1.setVolume(50);
sound2.setVolume(80);

You’ll need two clips onstage (clip1 and clip2); two sounds in the Library with

linkage set and identifiers (“music” and “narration”). When the sounds start,

you’ll hear their respective sounds change when calling

sound1.setVolume(toWhat) and sound2.setVolume(toWhat). It’s weird because

you’d think by having the two sound objects stored in two separate variables

(sound1 and sound2) you’d have independent control. Just remember, though,

you need to attach the sound to a specific clip instance (by providing the clip as a

parameter) to have such control. Lastly, variables (as always) are indeed part of

the timeline where they’re created (so you’ll need to apply all that you know

about targeting if you want to refer to them from other timelines). But interest-

ingly, including a clip reference in the new Sound() constructor has no impact on

targeting (so you don’t need to worry about it).

The Sound object is pretty awesome. Unfortunately, you can’t ascertain the total

length of a sound or determine the current position in a sound while it plays.

However, in conjunction with the getTimer() function, you can get pretty close.

That is, if you know how long a sound is (because you imported it) and you

know when a sound started (because you started it), you can store the start time

in a variable (such as startTime=getTimer()) when you start the sound and then

calculate the elapsed time in milliseconds any time by using the expression

getTimer()-startTime. If you know the sound is 10 seconds long (10,000 mil-

liseconds) and you find that getTimer()-startTime is greater than 10000, then

you know the sound has expired.

To use the Sound object, you just need to remember these steps:

1. Import a sound and set its linkage to export. Also, give the sound a unique
identifier.

2. Instantiate the Sound object and store it in a variable by using the “new”
constructor: mySound=new Sound().

Part I Foundation244

13 0789 CH11 3/20/01 3:49 PM Page 244

3. Attach a sound by referring to the identifier name given in step 1:
mySound.attachSound(“identifier”).

4. Start the sound and then use any of the other methods as you wish:
mySound.start().

5. Finally, when you’re sure that you won’t need the sound anymore, you can
delete the variable containing the object: delete mySound. Although I
don’t believe a few unused sound objects will bring your movie’s perform-
ance to a crawl, just as any variables, there’s no reason to have more than
you’re using. (By the way, be sure to stop() the sound before you delete
the variable, or you’ll lose control of the sound.)

Color

Through scripting, you can use the Color object to apply color effects on clip

instances the same way you can manually use the Effect panel. The process is

analogous to using the Sound object. The Color object requires that you first

instantiate an object through new Color(“clipToTint”) in which “clipToTint”

is the clip you want to affect, and then use one of the two methods—setRGB()

and setTransform()—to cause the clip to change. It really is that simple. It’s just

when you want to perform elaborate effects, there are additional details—as

you’ll see.

Simple Coloring

Here’s the simple version of coloring a clip using the Color object. First, instanti-

ate the Color object and specify a target clip:

myColor=new Color(“theClip”);

The variable myColor now contains the object, so the clip instance named

theClip will be affected when we do the next step. (Notice that even though the

clip is referenced between quotes, you can still use target paths as long as you

remember the quotes.) At this point, you can color the clip using the setRGB()

method. To tint it pure red, use

myColor.setRGB(0xff0000);

For green,

myColor.setRGB(0x00ff00);

Chapter 11 Objects 245

13 0789 CH11 3/20/01 3:49 PM Page 245

Notice that the parameter used for the setRGB() method is in the form of a hexa-

decimal color reference. The first two characters 0x act as a warning to Flash that

what follows is in the hexadecimal format. So that’s it! As long as you know the

hex value for the color you intend to use, this works great. By the way if you

want to learn more about hexadecimal color references, the easiest way is by

exploring Flash’s Mixer panel shown in Figure 11.3.

Part I Foundation246

Figure 11.3 You can change Flash’s Mixer panel (left) to Hex or simply view Hex val-

ues any time you select a color swatch (right).

Using RGB Values

In addition to providing a hex value (after 0x) as the setRGB() method’s parame-

ter, you can provide a number between 0 and 16,777,215. The following three

paragraphs include a detailed explanation of how you can specify colors in an

intuitive (RGB) manner. 24-bit color includes 8 bits for each of the three colors

red, green, and blue. This means that there are 256 shades for each color (0-255)

because each binary digit is either “on” or “off.” Eight binary digits—1, 2, 4, 8,

16, 32, 64, 128—all “on” adds up to 255. If they’re all off, it adds up to zero.

The highest number you can represent with twenty-four binary digits (three 8-bit

colors) is 16,777,215.

An interesting method is used to relate 16 million different values to three colors.

Blue always gets the first 8 bits (1 through 8 bits or 0-255). A value of 0 is no

blue, and 255 is 100% blue. Something such as 128 is only 50% blue. To add

green to the equation, 8 bits are still used, but they start at 9 and go through 16.

So instead of ranging from 0-255 in one-step increments, green is defined with

numbers between 256 and 65,280, which is 256 steps of 256 each. So every

notch of green is 256; 256 is one notch of green, 512 is two notches of green,

and so on. A number such as 522 is two notches of green and 10 notches of blue.

13 0789 CH11 3/20/01 3:49 PM Page 246

The way to see the breakdown of blue and green is to first extract the round 256

increments (256 goes into 522 twice; then the left over 10 is used for blue).

Think about if blue went from 0-99 (in steps of 1) and green went from 100 to

1000 (in steps of 100). Because you extract the largest steps first and then the

remainder, a number such as 600 would be a shade of green 6 units deep (and no

blue), but a number such as 630 would be 6 units green and 30 units of blue. It

actually works just like this except that instead of being based on 1s and 100s,

it’s based on 8 bit and 16 bit. Of course, red gets the last 8 bits, which means that

it steps from 65,280 to 16,711,680 in 256 steps of 65,536 each. All this means is

that it’s next to impossible to intuitively specify colors using RGB—but we’ll

find a way.

The reason the previous concept is so difficult to understand is that we like to

think of digits going from 0-9 (that is, in base 10). In our base-10 system, the far

right digit is for “ones” (0-9), the second digit is for “hundreds” (0-9 again, but

representing how many “hundreds”), and so on. Hexadecimal values do it in

three pairs of characters RRBBGG. For example, the first two characters “RR”

represents a number between 0-255 for red. The three 256-shade values for R, G,

B are in the 24-bit system; they’re just hard to derive. If you think in binary,

though, it’s probably easiest. Using 8 digits (for 8 bits), you can represent any

number from 0-255. For example, 00000001 is 1, 00000010 is 2, and 00000011

is three. Each position in the 8-digit number represents a bit. To read the previous

binary numbers, consider the far right digit as the “ones” (0-1), the second digit

as the “twos” (0-1 representing how many “twos”), the third digit is for the

“fours”, and so on. Therefore you can count (in binary) 001, 010, 011, 100, 101,

111. Check it out... 1, 2, 3, 4, 5, 6 in binary!

For a 24-bit color, you need only to have 24 binary digits. The eight at the far

right represent 0-255 for blue, the middle eight represent 0-255 for green, and the

leftmost eight digits represent 0-255 for red (see Figure 11.4).

Chapter 11 Objects 247

Figure 11.4 A binary representation of a 24-bit number includes eight digits for each

color.

13 0789 CH11 3/20/01 3:49 PM Page 247

Finally, I can show you a quick way to convert RGB values (of 0-255 each) into

binary at the same time that they can be used in the setRGB() method. That is,

how do you turn r=255, g=255, and b=255 (which is white) into a binary series of

24 ones or zeroes (that can, in turn, be used as the parameter passed when invok-

ing setRGB())? Assuming that r, g, and b are variables containing a number

between 0 and 255, you can use a bitwise shift operator to specify how many dig-

its to the left you want the binary number to shift. That is, 5<<8 takes the binary

version of 5 (101) and shifts it eight spots to the left (10100000000—that’s 101

with eight zeros). This is exactly how to shift the value for green up eight places

(or g<<8). Red needs to be shifted 16 places, so r<<16 is used. Finally, the com-

bined form looks as follows:

myColor.setRGB(r<<16 | g<<8 | b);

Notice that b (the value for blue) doesn’t need to be shifted. The result of the

entire expression in the parentheses is a binary number representing RGB by

using eight digits for each color. In practice, you just need to make sure that your

values for r, g, and b are between 0 and 255; then simply use the previous

method call as is.

Using the Color Transform Method

Naturally, you probably aren’t satisfied with only 16 million different possible

colors—you probably want to change the alpha of a color too. After all, I said

you can use scripting to achieve the same results that the Effect panel can—and

just look at all the things you can do with the Advanced option in the Effect

panel in Figure 11.5. The setTransform() method allows you to modify any clip

that has been associated with the color object in the same way the Advanced

option of the Effect panel does. Of course, you could always just use the familiar

theClip._alpha=70 if you ever need to change the alpha of a tinted clip, but

setTransform() can do even more than that.

Actually, if you understand the interface of the Advanced option of the Effect

panel (which is easiest when applying an effect to a clip containing a raster

graphic), you’ll better understand how to use setTransform(). Just like using the

setTransform() on the Sound object, you’ll need to pass an object as a parame-

ter. You first create a generic object, set its properties according to the effect you

want, and then pass it when invoking setTransform(). The generic object has

eight properties that correlate directly to the eight settings in the Effect panel. Of

course we’re not using the panel (that is the manual way), we’re doing this with

Part I Foundation248

13 0789 CH11 3/20/01 3:49 PM Page 248

scripting—but it helps to consider these eight properties in relation to the panel

(see Figure 11.6).

Chapter 11 Objects 249

Figure 11.5 The Advanced option in the Effect panel gives you fine control over tinting

(especially with bitmaps).

ra

ga

ba

rb

gb
bb

ab

aa

Figure 11.6 The settings in the Advanced Effect panel are the same for the generic

object passed to the setTransform() method.

Here’s a code sequence you might use to tint a clip 50% red and 30% alpha:

transObj=new Object()
transObj.ra = 50;
transObj.rb = 255;
transObj.ga = 100;
transObj.gb = 0;
transObj.ba = 100;
transObj.bb = 0;
transObj.aa = 30;
transObj.ab = 0;
myColor=new Color(“theClip”);
myColor.setTransform(transObj);

13 0789 CH11 3/20/01 3:49 PM Page 249

I see setTransform() as having two main benefits. You can change alpha of a

clip and you can control subtle color shifts that are most apparent when the clip

being colored contains a raster graphic (such as .bmp or .jpg). The fact that there

are other ways to control alpha makes me think that the only real value for

setTransform() is when manipulating raster graphics. The kinds of effects you

can make are pretty cool, though.

Before we move on, let me just mention the two other methods getRGB() and

getTransform(). The getRGB() method returns (in base 10) the last color value

used on the object referenced. That is, myColor.getRGB() will return the color

for the clip associated with the object stored in the variable myColor: specifically,

a number between 0 and 16,777,215. By the way, a handy way to translate that

number to binary is by using the toString() method but by providing a parame-

ter. That is, myColor.getRGB().toString(2) will return (in the form of a string)

the color value represented in binary. You can even use toString(16) to convert

the number being operated on to hexadecimal. Check it out by including a

Dynamic Text field onstage containing a variable value and use:

value=myColor.getRGB().toString(16). Finally, realize that the value returned

when you use getTransform() is an object with eight properties. For example, if

you want to ascertain the current alpha percentage, use

myColor.getTransform().aa because aa is the property containing alpha per-

centage.

Date

The Date object gives you an easy way to store specific dates, ascertain the cur-

rent date (and time), and find out details about any date (such as its day of the

week). For example, I know I was born on a Wednesday—not because I remem-

ber, but because I can check it with the Date object. Basically, I created a new

instance of the Date object with my birthday as the initial value. Then I used a

method that returns the day of the week. Another interesting application is to

repeatedly reassign a variable a new Date object (and use the current date and

time for the initial value) and then you can display all the details of the current

time (using a clock or calendar). It’s even possible to accurately find the differ-

ence (in number of days) between two dates, and you don’t need to know which

are leap years or how many days any particular month “hath.” (You know—

“Thirty days hath September…”)

Part I Foundation250

13 0789 CH11 3/20/01 3:49 PM Page 250

Instantiating a Date

Similar to the Color and Sound objects, you always start by instantiating the Date

object and then you can use methods on it. The variable you use to hold a Date

object contains a snap shot of a moment in time. That is, a variable that contains

the Date data type is only holding one moment in time. When you create an

instance of the Date object, you can specify that moment (year, month, hour, sec-

ond, and even millisecond if you want); or if you don’t specify any date, you’re

given a date that matches the setting of your user’s computer clock. Here’s the

form to create an instance with the current time:

now=new Date();

The variable now contains a Date object with the current time. You can provide up

to seven optional parameters (to specify year, month, day, hour, minute, second,

and millisecond). For example, this is how you create an instance that contains

the U.S. Independence Day (July 4, 1776):

indyDay=new Date(1776, 6, 4);

That is, the year 1776, the month July (counting January as 0, February as 1), the

fourth date in the month (which—surprisingly—starts counting with 1). I left out

some optional parameters: hour, which counts from 0 (midnight) to 23 (11 p.m.);

minutes (0-59 for every hour); seconds (0-59 per minute); and, milliseconds (of

which there are 1,000 per second). Because the seven parameters are optional,

you can leave them off if you want (though the order is important with the first

parameter always referring to year, the second to month, and so on).

Manipulating Dates

After you’ve created a variable that holds your Date object, you can manipulate

and view it through the various methods. Although quite a few methods are avail-

able (see Figure 11.7), there are only two general types—methods that “get”

information from the date and methods that change or “set” elements within

dates. Let’s walk through some operations to get a handle on both types of

methods.

Chapter 11 Objects 251

13 0789 CH11 3/20/01 3:49 PM Page 251

Figure 11.7 Although there are many methods for the Date object, they fall into two

general categories—those that get values and those that set values.

Getting Information from Dates

Several methods “get” specific information from a date. For example, the

getDay() method returns the day of the week. However, because it returns a

number between 0 (for Sunday) and 6 (for Saturday), you might first create an

array with all the days of the week:

Part I Foundation252

13 0789 CH11 3/20/01 3:49 PM Page 252

dayNames=[“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,
”Saturday”];

Then you can easily determine the day of the week that the U.S. constitution was

signed:

trace(“Signatures were made on a “+dayNames[indyDay.getDay()]);

Because indyDay.getDay() returns a 4, the expression dayNames[4] would return

“Thursday”. It’s almost as though it doesn’t matter that getDay() starts counting

with Sunday as 0 because when grabbing data from an array, we count the same

way. (This isn’t to say that it will never mess you up.)

Other methods are similar to getDay() such as getYear() (and its better half

getFullYear()), getMonth(), and getDate() (which returns the number of the

day in the month). It’s unlikely that you’d really need these to ascertain the year,

month, or date for a Date object that you created by specifying the date.

However, they can be particularly useful when you’re not sure of the date. For

example, let’s say that you want your Flash movie to display information about

the current date in a Dynamic Text field. You can start with

now=new Date();

Then, if your text field contains a variable called message, you can use the fol-

lowing code:

monthNum=now.getMonth()+1;
dateNum=now.getDate();
yearNum=now.getFullYear();
message=monthNum+”/”+dateNum+”/”+yearNum;

By the way, getYear() returns the number of years since 1900 (so if you do a

getYear() on a date in the year 2001, you’ll get 101). The method

getFullYear() returns a 4-digit number (which naturally renders your Flash

movie non-Y10K-compliant—but I wouldn’t worry about it).

If you want to display the date in a format that’s a little more wordy than

3/31/2001 (as previous), you can use a quick-and-dirty technique involving the

toString() method. When used on a Date object, toString() returns the full

date and time in the form:

Sat Mar 31 17:03:57 GMT-0800 2001

Chapter 11 Objects 253

13 0789 CH11 3/20/01 3:49 PM Page 253

Although this is kind of nice, if you want something more readable, you could

use a function such as this one:

function getNiceDate(whatDate){
var dayNames=[“Sunday”,
➥”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,”Saturday”];
var monthNames=[“January”,”February”,”March”,”April”,”May”,
➥”June”,”July”,”August”,”September”,”October”,”November”,”December”];
var day=dayNames[whatDate.getDay()];
var month=monthNames[whatDate.getMonth()];
var date=whatDate.getDate();
var year=whatDate.getFullYear();
return (day+” “+month+” “+date+”, “+year);

}

Just pass an actual Date object for a parameter, and you’ll get a string back that

follows a more traditional form than what you get with toString(). That is,

trace(getNiceDate(indyDay)) will result in “Thursday July 4, 1776” dis-

played in the output window.

The data maintained in a Date object is detailed down to the millisecond.

However, because instantiating a new Date object (with new Date()) only takes a

snap shot of the current time, in order to make a clock (that doesn’t appear frozen

in time), you’ll need to repeatedly re-instantiate the date object. The ideal place

to do this is inside an enterFrame clip event. So, if you have a Dynamic Text

field (associated with a variable theTime) in a movie clip and you attach the fol-

lowing code to the clip instance, you’ll have a nice digital clock (as shown in

Figure 11.8).

Part I Foundation254

Figure 11.8 You can easily make this digital clock display with a Dynamic Text field

and in a Movie Clip.

onClipEvent (enterFrame) {
now=new Date();
seconds=now.getSeconds();
if (seconds<10){
seconds=”0”+seconds;

}

13 0789 CH11 3/20/01 3:49 PM Page 254

minutes=now.getMinutes();
if (minutes<10){
minutes=”0”+minutes;

}
hours=now.getHours();
amPm=”AM”;
if (hours<10){
hours=”0”+hours;

}else if (hours>12){
amPm=”PM”
hours=hours-12;
if (hours<10){
hours=”0”+hours;

}
}
theTime=hours+”:”+minutes+”:”+seconds+” “+amPM;

}

The now variable is reassigned a new instance of the Date object and then used in

most of the subsequent calculations. The seconds variable is set by applying the

getSeconds() function to now. If seconds is less than 10 we just add a “0” in

front of it so it still displays using two characters. The minutes variable is similar

to seconds. In the case of hours, determining the actual hour is straightforward

enough (hours=now.getHours()). I first assume it’s AM (by setting amPm to

“AM”), but if hours is not less than 10, I check if it’s greater than 12...in which

case I say amPm is “PM” and then take 12 off (that is, if it’s 14:00 you subtract 12

to get 2 PM). Finally, I build the string called theTime that’s displayed in a

Dynamic Text field.

Naturally, the ugly part of this code is the error checking. That is, I go through

extra work to make sure that numbers less than ten appear with a zero to their

left. The important part to remember in this example is that the variable now is

continually reassigned a new Date object (12 times a second if the frame rate is

set to 12 fps). I don’t think you’ll see a performance hit from this code executing

so frequently—but even if you did, it’s a clock, so you’ll want it to update fre-

quently.

Setting Values in Dates

So far we’ve looked at using the Date object to store a moment in time and then

use methods to peek inside. Although we haven’t explored all these methods that

“get” values returned, there’s another set of methods that “set” values. These

allow you to change any attribute of a date stored in a variable. For example,

Chapter 11 Objects 255

13 0789 CH11 3/20/01 3:49 PM Page 255

if you want to take today’s date and find out the month and date for a day exactly

two weeks from now, you can use the setDate() method. The setDate() method

will change the date in the attached object to whatever number you provide as a

parameter. If you provide “today plus 14 days” (that is, getDate()+14), you’ll

find the answer. Here’s the code:

now=new Date();
fortNight=new Date();
fortNight.setDate(now.getDate()+14);
trace(“Two weeks from now is: “+ fortNight.toString());

Notice that I could have simply used the setDate() method on my original date

object (now). That is, now.setDate(now.getDate()+14). Instead of getting con-

fused with a variable called “now” that actually contained a date in the future, I

came up with another variable name (fortNight). But it’s important that before I

try setting fortNight’s date, I had to instantiate the variable as a Date object (in

the second line of code). Simply, you can only use methods on objects. Another

important point is the setDate() method actually changes the object being oper-

ated on. This is performing an assignment without the equal sign. Finally, the

cool part about setDate() (and all the other “set” methods) is that other elements

in the object being operated on automatically update accordingly. That is, if you

“setDate” to today’s date plus 40 days (now.setDate(now.getDate()+40)),

you’ll find the object’s month (found through getMonth()) has changed.

Similarly, you’ll find the year changes when you “setMonth” to the current

month plus 13.

There’s one last method that I want to describe. When you use the method

getTime() on any Date object, the elapsed milliseconds between January 1st

1970 and the object being operated on will be returned. This might seem like a

useless piece of trivia but it might come up on a quiz show some time. It also

happens to be the most direct way to determine the difference between two dates.

For example, if you knew one person was born five days after January 1, 1970

and another person was born 200 days after January 1, 1970, it’s simple to calcu-

late the difference in their two ages as 195 days. It’s not that you care how many

days apart from January 1st 1970 each birthday is—it’s just a common reference

point. In the following code sample, you see that we never really take much note

as to how many milliseconds have past since 1970, we just find the difference

between two dates. In fact, one of the dates used occurred before the magic 1970

date.

Part I Foundation256

13 0789 CH11 3/20/01 3:49 PM Page 256

birthday = new Date(1969, 1, 12);
bicentennial = new Date(1976, 6, 4);
difference = Math.abs(birthday.getTime()-bicentennial.getTime());
millisecondsPerDay = 1000*60*60*24;
difference = Math.floor(difference/millisecondsPerDay);
trace (“Birthday was “+difference+” days before or after the
bicentennial”);

Notice that no one really cares how many milliseconds have elapsed since

January 1st 1970 (or, even that getTime() could result in a negative number if

the date being operated on was earlier). Instead of calculating whether a birthday

was before or after the bicentennial, I just calculated the absolute value of the

difference. Absolute value (Math.abs()) always returns a non-negative number.

Finally, to convert milliseconds into days, I divided by 1000*60*60*24 (which is

based on the fact that there are 1000 milliseconds every second, 60 seconds every

minute, 60 minutes every hour, and 24 hours each day). Instead of just dividing

the difference by millisecondsPerDay I use Math.floor() to make sure to just

extract the integer portion of the number. That is, I don’t want to know that it’s

been 2698.958333 days—2698 is plenty. Using this same basic technique, you

can accurately calculate the difference between any two days.

Attach Movie Clip

To be perfectly accurate, we’ve already discussed the Movie Clip object.

However, by using the technique that follows, you can effectively drag instances

of clips on to the stage entirely through scripting. This is almost identical to the

Sound object. And, just like how you have to remember the attachSound() step

with the Sound object, you must remember the attachMovie() step here.

If you want to use scripting to cause a clip instance to appear onstage during run-

time, you must first set the linkage for that clip (as we did for sounds) and come

up with a unique identifier. Then, all you do is call the attachMovie() function

using this form:

targetPath.attachMovie(“identifier”, “newInstanceName”, depth);

Where “targetPath” is a path to where the new clip will reside (like _root),

“identifier” is the name you gave the clip through its linkage,

“newInstanceName” assigns it an instance name (as if you typed it in manually

through the Instance panel), and depth is the level number. (Most clips are on

level 0, but when loading movies you can specify higher numbers and the clips

Chapter 11 Objects 257

13 0789 CH11 3/20/01 3:49 PM Page 257

will appear on top of others.) For example, if I have a clip who’s identifier is

“box”, I could use

_root.attachMovie(“box”, “box1”,0);

This will place an instance of the clip in the Library whose identifier name is set

to “box” onstage. The clip’s instance name will be box1. The following code will

position and change the _alpha property of the clip:

_root.box1._x=190;
_root.box1._y=33;
_root.box1._alpha=50;

Looks pretty familiar, eh? Well, to explain this any further would probably insult

your intelligence. We covered all the bases of Movie Clips in Chapter 7, “The

Movie Clip Object.” The only trick to remember here is the identifier that’s set

through the Library item’s Linkage. Additionally, you can’t put more than one

clip on the same level. If you attach a clip and specify level 0, you can’t put any

other clips in that same level (nor can you load movies into that same level).

Also, if you want to remove a clip that’s been created using the attachMovie()

function, you can use removeMovieClip() which is a method of the clip, so the

form is

targetPath.instanceName.removeMovieClip();

Notice that you apply the removeMovieClip() method on a clip reference, the

same way that you use any method, not on the identifier. For example, to remove

the clip created previously, use the following:

_root.box1.removeMovieClip();

Finally, there’s another confusingly similar method called

duplicateMovieClip(). All you need to specify is the new instance name for the

clip and the level number. For example, you can duplicate the box1 clip with

_root.box1.duplicateMovieClip(“box2”, 1);

This method requires that an instance has already been instantiated (otherwise,

you’d have no object to apply this method to). The good news, however, is the

duplicateMovieClip() method doesn’t require that you’ve previously specified

the linkage and given the library item an identifier. Also, any scripts attached to

the clip that’s duplicated are contained in the duplicate. By the way,

removeMovieClip() works the same way with clips created through the

duplicateMovieClip() method.

Part I Foundation258

13 0789 CH11 3/20/01 3:49 PM Page 258

Summary

We’ve looked at three traditional objects made for Flash—Sound, Color, and

Date. In each of these, you first need to create an instance of the object (by put-

ting it in a variable) and then you can use any of the object’s methods. The three

objects introduced in this chapter are a good representation of “formal” objects.

So many other objects in Flash have special conditions that let you get away

without instantiating them (the Math object and String object in particular). Also,

we got to see a generic object when creating the parameter for the Sound and

Color object’s setTransform() method. Creating generic objects will be fully

explored in the next chapter when we create our own custom objects. Our old

friend the Movie Clip object was also touched on in this chapter when we looked

at the process of “attaching” a movie clip. When you attach both a movie clip

and a sound, you just have to remember to provide an identifier through the

library item’s linkage option.

If you ever have trouble grasping concepts about objects in general, remember

that you can always think about what makes an instance of a clip an object. It has

a set of properties that can be varied from instance to instance. And just like any

object, there are a host of methods that can be applied to individual instances of

clips. The other objects explored in this chapter are still objects; they just are not

really visible.

Chapter 11 Objects 259

13 0789 CH11 3/20/01 3:49 PM Page 259

