
Functions

Now that you can write complex statements and affect clip instances by changing

their properties, it’s time to learn to modularize your scripts. Placing the same (or

very similar) script on several buttons is a cry for help. Every time you copy and

paste the same block of code, a little voice should be saying “No!” In Chapter 3,

“The Programmer’s Approach,” we discussed why you want to reduce repeated

code. Now you’ll see one great way to do it: functions.

Among all the benefits of functions, the core benefit is that you can store code in

one place and access it as much as you want. Type it once, use it a million times.

This chapter will introduce other benefits as well as show you how to create

functions.

In addition to learning how to use homemade functions just as you use Flash’s

built-in functions, in this chapter you will write functions that do the following:

• Act as subroutines, thus eliminating repeated code

• Accept parameters so that they can perform differently based on different
situations

• Return values so that they can be used within expressions

• Act as custom methods (for your own purposes)

{ Chapter 8 }

10 0789 CH08 3/20/01 5:24 PM Page 161

Part I Foundation162

You’ll see all three uses for functions (subroutines, returning values, and acting

like methods). As you might have noticed, functions can do more than simply

reduce repeated code—but that’s the main thing. Regardless of how you use

them, functions always take the same form.

How to Use Functions

Functions involve two steps: writing the function and then using the function.

We’re going to discuss using functions first, which might seem like I’m putting

the cart before the horse. However, because Flash’s built-in functions are already

written, it’s easy to look at using those. Also, this way, when you do write your

own functions, you’ll already know how to use them. Suffice it to say that you

can’t start using a homemade function unless you write it first…and if you just

write a function (but never use it), nothing happens.

Using Built-in Functions

To get this far in the book, you’ve already learned something about the built-in

functions. In addition to the brief explanation in Chapter 4, “Basic Programming

in Flash,” you actually used a few functions in Chapter 5, “Programming

Structures.” For example, to ensure that an expression was treated like the

number data type, we used the Number() function as in Number(anExpression).

This evaluates the string “anExpression” as a number. If the expression in

parentheses evaluated as “112”, the entire expression (Number(“112”)) would

evaluate as 112.

In Chapter 5, we also looked at the methods of the Math object (square root and

sine, for example). These are—at their core—functions too, but we’ll return to

methods later in this chapter. For now, let’s consider only the conventional func-

tions listed in the Actions panel (as in Figure 8.1).

Regarding all the built-in functions, consider two things: how they are used in

expressions or statements and what they do. Any time you want to call (that is,

execute) a function you simply type its name and parentheses using this form:

functionName(). Functions’ names are always followed by parentheses. Not only

does this make them easy to identify, but—more importantly—the parentheses

provide a means for you to provide an optional parameter (also sometimes called

an argument). The getTimer() function is complete without parameters.

getTimer() returns the elapsed milliseconds since the movie started, so it

10 0789 CH08 3/20/01 5:24 PM Page 162

doesn’t need any additional information. The Number() function, however,

requires a parameter. It needs to know what expression to evaluate as a number.

Another function that requires a parameter, String(expression), will return a

string version of expression.

Figure 8.1 Flash’s conventional functions as listed in the Actions panel.

Now you know how to use a function: call its name followed by parentheses,

which may or may not accept parameters. As for what they do, it’s important to

understand that the built-in functions do nothing except return values. They don’t

perform an assignment as a statement does. That is, if myVar equals the string

“11”, the expression Number(myVar) not only has no effect on myVar (it’ll stay

“11”), but by itself Number(myVar) is practically meaningless because it’s only an

expression and not a statement. The function only returns a value so you can use

the function within a larger expression or statement. For example,

myVar= Number(myVar) will first perform the function on the right side of the

equal sign and return (into its place) a number version of myVar (so the statement

becomes myVar=11). Then the equals will perform the assignment (and myVar is

changed). It’s simply a way to write an expression that changes depending on

what the function returns.

Chapter 8 Functions 163

10 0789 CH08 3/20/01 5:24 PM Page 163

Imagine a function that returned the effective temperature based on the wind

chill. (By the way, we could write such a homemade function.) In that case,

you’d need two parameters (current temperature and wind speed). Multiple

parameters are separated by commas. Calling the homemade function would look

like this: effectiveTemp(40,20). We could build the function so that it arbitrar-

ily establishes the first parameter is current temperature and the second is wind

speed. Even after we build such a function, we can’t just call the function

because we need a place for the answer to go—that is, by itself

effectiveTemp(40,20) doesn’t really do anything. One logical thing you can do

is call this function within a larger expression, which would look like this: “It’s

only 40 degrees, but it feels like it’s “+effectiveTemp(40,20)+”!”.

You could also call the function within a statement to assign the result that’s

returned to a variable: realTemp=effectiveTemp(40,20). The thing to remember

is that all built-in functions do one thing: return values.

Another point that should be clear is that the parameters you provide can be

hard-wired (such as 40 or 20), or they can be variables (such as curTemp or

curSpeed) and the value of the variables will be used instead. The parameters

could actually be the result of expressions (such as TempSum/NumSamples or

speedInKilometersPerHour*.62). Whatever is placed in the parentheses

will be evaluated. Finally, consider that expressions can include calls to

functions that return values. Therefore, one parameter might invoke a function

and whatever is returned from that function would be used in its place.

These examples are completely legitimate:

realTemp=effectiveTemp(curTemp,speedInKilometersPerHour*.62)

and realTemp=effectiveTemp(Number(temperatureString),

Number(windSpeedString)). Notice the Number() function that’s nested in place

of a parameter. Just remember all that you learned in Chapter 5 about writing

complex expressions and the nested parentheses should be easy to track.

Using Homemade Functions

Using homemade functions is practically identical to using built-in functions. You

call homemade functions in the same way that you call built-in functions:

functionName(optionalParams). The difference is that homemade functions can

do other things besides just return values. You can design your homemade func-

tions to return values if you want. Also, if you want your function to accept

parameters, you need to build them that way. So, calling homemade functions is

Part I Foundation164

10 0789 CH08 3/20/01 5:24 PM Page 164

identical to calling built-in functions. However, when we get to writing our func-

tions (later this chapter), you’ll find that homemade functions can do a lot more

than the built-in ones—you just have to write the script to make them perform

the operation that you have in mind.

There is one slight difference in how you call homemade functions. In the case of

the built-in functions, you can call them any time, any place—on a button, in a

clip’s keyframe, wherever. Homemade functions are written in keyframes. It can

be a keyframe in the main timeline or inside a nested clip. Because homemade

functions are “in” a particular timeline, they need to be targeted. If you are

calling the function from any keyframe or button located in the same timeline as

your function, you can call that function by simply typing its name

(functionName()). (That is, technically, a relative reference.) However, if you are

“in” another timeline, you have to precede the name of the function with a target

path. Maybe you have a function in the main timeline and you want to call it

from inside a clip. Just use the absolute reference _root.functionName(). If the

clip is only nested one level deep, you could alternatively call the function with

the relative _parent.functionName(). The concept of targeting should be very

familiar to you. All the same information you learned about targeting properties,

variables, or methods of clips in Chapter 7, “The Movie Clip Object,” applies to

calling functions…relative and absolute references. (You can learn more about

targeting in Chapters 1, “Flash Basics,” and 7.)

In Chapter 7, you also learned that many built-in Actions are really methods of

the Movie Clip object. Methods are functions that are applied to individual

instances (of clips, in this case). For instance, as a method,

someClip.gotoAndStop(2) will cause an instance named “someClip” to jump to

frame 2. When you write homemade functions, you can choose to write them in a

keyframe of the main timeline or in a keyframe of any master symbol. Naturally,

you’ll need an instance of the clip containing the function if you want to call it.

When calling such functions, you always precede the function name with a path

to that function. The syntax of such a call looks the same as when applying

methods to clips. That is, someClip.gotoAndStop(2) is the same form as

someClip.myFunction() (where “myFunction” is the name of a homemade func-

tion that exists in a keyframe of the clip “someClip”). Not only do they “look”

the same, but homemade functions can act like built-in methods if that’s how you

design them. This is a great way to leverage the knowledge you already have.

Instead of trying to learn lots of different things, I think it’s best to learn a few

things really well, and then everything else can be understood in relative terms.

Chapter 8 Functions 165

10 0789 CH08 3/20/01 5:24 PM Page 165

Creating Homemade Functions

Now that you know how to call functions (that is, how to use them), we can look

at how you write them. The concepts of accepting parameters, returning values,

and acting like methods should start to really make sense when you apply them

to a purpose. You’ll not only learn how to write functions, but also how they can

help you. It’s not as though this were an exercise in learning vocabulary words

such as parameters and methods; rather, you will get to the point where you can

reach for these tools as needed to solve problems.

Basics

Functions are written in keyframes. I find it much easier to type in the basic form

while in Expert Mode. Here’s the skeleton form:

function myFunction(){
}

The word “function” is always used as is. Next, you type the name for your func-

tion—anything you want as long as it’s one word. (Keep in mind, you can’t use

words that are already part of the ActionScript language for your function name.)

Parentheses always follow the function name. If you expect to receive any

parameters, you must provide each with a temporary one-word name (separated

by commas when you have more than one parameter). Finally, the opening and

closing curly brackets enclose your entire script. Within the script for the func-

tion, you can use the name given for any parameters and it will evaluate as the

value for that parameter. For example, consider this start of a function that

accepts a parameter:

function doubleIt(whatNum){
}

In this case, the function name is “doubleIt.” If you call this function (from else-

where), you’d say doubleIt(). Because this function can be called while provid-

ing a parameter, the call would actually look like doubleIt(12) or like

doubleIt(getTimer()). Calling the function effectively jumps to the function,

sending with it the value of the parameter. Once at the function’s script, the value

provided as a parameter is referred to by using the parameter name (in this case,

whatNum). If the parameter’s value happens to be 12, whatNum is 12; if the param-

eter is 1203, whatNum is 1203. This is just like any variable (you refer to their

Part I Foundation166

10 0789 CH08 3/20/01 5:24 PM Page 166

values by referring to their name). In the preceding example, you can refer to

whatNum anywhere within the function, and you’ll be referring to the value of

whatever was passed as a parameter. You’ll see how to apply parameters in a

moment, but for now just understand these two basic forms (functions that accept

parameters and those that don’t).

You’re about to see the four basic applications of homemade functions. Then

you’ll have a chance to create functions that solve problems.

Functions as Subroutines

The first type of function we’re going to write is unlike built-in functions because

it won’t return a value. A subroutine is one or more lines of code that you want

to execute from more than one place in your movie. Perhaps you have several

buttons that do the same basic thing. Instead of putting the same script on each

button, you can call the same function from each button. The advantage (in addi-

tion to reducing the amount of typing) is that your code is centralized. If there’s a

bug or you want to make an adjustment, you need to do it in only one place (in

the master function) and not on each button’s call to the function.

Consider the example from the “Dynamic Referencing” section in Chapter 7

(shown in Figure 8.2).

Figure 8.2 Moving all seven “box_” clips can be done in a for-loop that references

them dynamically.

Chapter 8 Functions 167

10 0789 CH08 3/20/01 5:24 PM Page 167

There were “forward” and “back” buttons that, in addition to moving to the next

or previous frame of a clip, also set the _x position of seven clips (“box_1,”

“box_2,” and so on) to zero. The code for the “forward” button was as follows:

on (release) {
slideShow.nextFrame(); //move slide show ahead
//Move all the boxes back to 0
for(i=1;i<8;i++){

root[“box”+i]._x=0;
}
root[“box”+slideShow._currentFrame]._x=50; //set cur box to 50

}

Notice that the “back” button code was almost identical:

on (release) {
slideShow.prevFrame(); //move slide show back
//Move all the boxes back to 0
for(i=1;i<8;i++){

root[“box”+i]._x=0;
}
root[“box”+slideShow._currentFrame]._x=50; //set cur box to 50

}

In addition to the “back” and “forward” buttons, there were seven invisible but-

tons on top of the box clips that had code that was nearly identical. Each of the

seven buttons covering the box clips had code like this (although the parameter

for gotoAndStop() was different for each button):

on (release) {
slideShow.gotoAndStop(1); //move slide show to frame 1
//Move all the boxes back to 0
for(i=1;i<8;i++){

root[“box”+i]._x=0;
}
root[“box”+slideShow._currentFrame]._x=50; //set cur box to 50

}

The only difference in each of the seven buttons was that the frame number used

in the gotoAndStop() method was different: 1, 2, 3, and so on. But the rest of

this code is the same as the “forward” and “back” buttons.

This is clearly a case in which a function can serve to eliminate redundant code.

The script in each button is identical except for the first line (and, as you’ll see

later, the first line is even similar enough to be moved into a function that accepts

Part I Foundation168

10 0789 CH08 3/20/01 5:24 PM Page 168

a parameter). For now, let’s move the repeated code from each button into a func-

tion. In place of the code that’s moved, we simply call our function. So, you can

simply create a function in frame 1 of the main timeline:

function moveBoxes(){
}

Then, paste (between the curly brackets) the code taken from each button. The

finished function will look like this:

function moveBoxes () {
for(i=1;i<8;i++){

root[“box”+i]._x=0;
}
root[“box”+slideShow._currentFrame]._x=50; //set cur box to 50

}

Finally, you simply need to call this function from each button. The “next” button

becomes

on (release) {
slideShow.nextFrame(); //move slide show ahead
moveBoxes();

}

The “back” button becomes

on (release) {
slideShow.prevFrame(); //move slide show back
moveBoxes();

}

And each invisible button looks like this:

on (release) {
slideShow.gotoAndStop(1); //the 1 is different in each button
moveBoxes();

}

Notice that in place of the code that was moved to the function, a call to the

function is used instead. That is, moveBoxes() is used in place of the code that

was removed.

Because the code is in only one place, it can be modified quickly. For example, if

it turns out that there are more than seven “box” clips to move, we can modify

that for-loop in the function.

Chapter 8 Functions 169

10 0789 CH08 3/20/01 5:24 PM Page 169

The process of writing a function is to first identify a need and then solve it. In

the case of a function that serves as a subroutine, the need is to reduce redundant

code. The solution involves extracting that portion of the code that’s repeated,

moving it into a function, and—in the place from which it was extracted—calling

the function. It’s fine to start scripting and later notice that some code is repeated.

When you find yourself copying and pasting code, bells should ring in your head

saying, “time to consider a function.” I often build my first version of a script

using a rather hard-wired approach. After I get it working, I walk through the

code and try to identify portions that are duplicated. Then, I try to move the

duplicated code into a function instead.

As you’re about to see, the repeated code doesn’t even have to be identical. It can

simply be similar. The bells that ring in your head can also be useful if they iden-

tify portions of your code that follow the same pattern. Just think about pseudo-

code. If the explanation of what’s being achieved in your code (the pseudo-code)

can be generalized, you can probably write a function instead. For instance, in

the preceding example, we didn’t extract the very first line in each button

because they were different. One used nextFrame(), another prevFrame(), and

each of the seven invisible buttons used a different parameter for gotoAndStop().

Although this might seem unique for each button, it can actually be generalized.

In pseudo-code, the general version of the first line for each button is “jump

slideShow to a new frame.” The trick is translating the pseudo-code. You’ll see

that the solution is to use a parameter.

Making Functions That Accept Parameters

Writing a function that accepts parameters is quite easy. Doing it effectively is

just a bit more work. First, consider the form

function myFunction(param){
}

Whatever value is sent as a parameter when calling this function (as in

myFunction(12)) can be referred to by using the variable name param. Inside the

function (between the curly brackets), you can refer to that parameter name

(param, in this case) and you are really referring to the value sent from the func-

tion call. It’s like if you order a steak cooked “well done.” Consider that the cook

always performs the “cookIt” function. The parameter is “doneness.” It doesn’t

matter whether you call this function by saying cookIt(“wellDone”) or

cookIt(“rare”), there’s always a “doneness” parameter. It just happens that the

value for doneness varies.

Part I Foundation170

10 0789 CH08 3/20/01 5:24 PM Page 170

One common reason to make your function accept parameters is that you don’t

really want to perform the exact same procedure every time, but rather you want

to perform a slightly different procedure each time. Just like the “cookIt” func-

tion, you’d like some variation available. Let’s try to further consolidate the script

in each button from the last example. The “next” button uses

slideShow.nextFrame(), the “previous” button uses slideShow.prevFrame(),

and the seven other buttons use slideShow.gotoAndStop(x) (where “x” is 1

through 7). Although this might look like three distinct scripts, they can easily be

consolidated. Without changing what we’ve already coded in moveBoxes, we can

add a feature to this function. Namely, we can make it accept a parameter that

serves as the destination frame for the slideShow clip. That is,

slideShow.gotoAndStop(destinationFrame) will work great if

“destinationFrame” evaluates to the correct number. We’ll just send a number

when we call the moveBoxes() function (as in moveBoxes(2)) and name the

parameter destinationFrame. Check out the finished function:

function moveBoxes (destinationFrame) {
slideShow.gotoAndStop(destinationFrame);
for(i=1;i<8;i++){

root[“box”+i]._x=0;
}
root[“box”+slideShow._currentFrame]._x=50; //set cur box to 50

}

Notice that only the very first line and the second line have changed (the rest

remains untouched). Now that this function accepts parameters (namely, the

frame to which you want slideShow to jump), we can adjust the various calls to

this function. (By the way, only when you make a significant change to the func-

tion—like adding a parameter—do you need to modify every call to that func-

tion—usually edits will occur only in the function itself and not in the calls to the

function.) The seven buttons are easy to adjust. In each button, remove the line

that starts slideShow.gotoAndStop() and change moveBoxes() to moveBoxes(1)

for the first button, moveBoxes(2) for the second button, and so on. For the

“forward” and “back” buttons, you need to first remove the first line (either

slideShow.nextFrame() or slideShow.prevFrame()). Then when calling

moveBoxes(), you need a value for the parameter. You can’t just hard-wire some-

thing like moveBoxes(2) because that will always jump to frame 2. The “for-

ward” button should (in pseudo-code) “jump to the current frame plus one” and

the “back” button should “jump to the current frame minus one.” We can write an

expression in place of the parameter that results in the frame to which we want to

Chapter 8 Functions 171

10 0789 CH08 3/20/01 5:24 PM Page 171

jump. The call from the “forward” button will look like this:

moveBoxes (slideShow._currentFrame+1). The “back” button will use

moveBoxes (slideShow._currentFrame-1). The expression

slideShow._currentFrame+1 can be translated as “slideShow’s current frame

plus one.”

Finally, there’s one slight problem with the solution I’ve outlined. Namely, it’s

possible to press the “forward” button when you’re already on the last frame of

“slideShow” or press the “back” button when you’re on the first frame.

Therefore, the value that is sent as a parameter can be too high or too low. Inside

the function, the line slideShow.gotoAndStop(destinationFrame) will attempt

to jump to frame zero or to a frame number greater than the maximum. Nothing

detrimental happens, but it’s worth addressing this issue…for practice, if nothing

else. (Ideally, we’d just make the buttons dim out and become inactive appropri-

ately—and you’ll do just that in the Slide Show workshop.) Without going

through the work to inactivate buttons there’s another simple fix for this issue.

Inside and at the top of the moveBoxes() function, add the following two

if-statements:

if(destinationFrame==0){
destinationFrame=1;

}
if(destinationFrame>slideShow._totalFrames){

destinationFrame=slideShow._totalFrames;
}

Translated, the first if-statement says that if the value for destinationFrame hap-

pens to be 0, reset destinationFrame to equal 1. The second if-statement checks

whether destinationFrame is greater than the _totalFrames property of

slideShow and if so, it sets destinationFrame to equal _totalFrames.

Just because destinationFrame is a parameter that’s accepted doesn’t prevent us

from changing its value after we’re inside the function. This solution resolves the

minor flaw in the original function. Here’s the final function in case you want to

attempt to rebuild the example from chapter 7:

function moveBoxes (destinationFrame) {
if(destinationFrame==0){

destinationFrame=1;
}
if(destinationFrame>slideShow._totalFrames){

destinationFrame=slideShow._totalFrames;
}

Part I Foundation172

10 0789 CH08 3/20/01 5:24 PM Page 172

slideShow.gotoAndStop(destinationFrame);
for(i=1;i<8;i++){

root[“box”+i]._x=0;
}
root[“box”+slideShow._currentFrame]._x=50; //set cur box to 50

}

It’s both typical and desirable to put the bulk of your code in functions and then

make the calls to that function as minimal as possible. Remember, you can

invoke any function as many times as you make calls to it.

Even though this sample function accepted a parameter and used that parameter’s

value directly (as the frame to which we jumped), parameters don’t have to be

used so directly. The parameter can control what part of a function to skip or exe-

cute. For example, a function could perform several very different procedures

depending on the parameter accepted. Consider this example:

function doSomething(whatToDo){
if (whatToDo==”eat”){

//place code for “eating” here
}
if (whatToDo==”sleep”){

//place code for “sleeping” here
}

}

If the function is called with doSomething(“eat”), just the code within the first

if-statement is executed. Notice, too, that if you called doSomething(“cry”), nei-

ther if-statement will be entered. Of course, you can also write nested if-else or

if-else-if statements. The point I’m making here is that you can use the parameter

to affect which part of the function is executed, rather than using the parameter’s

value directly within an assignment inside the function. I use this technique often

for multipurpose functions, which act like a clearing house. Several different pro-

cedures go through the same function, but only execute a small portion of the

function.

Making Functions That Return Values

Making a function that returns a value is as simple as adding a line that starts

with return. Following the word return, you can type a hard-wired number, a

variable, or an expression—the value of which will be “returned” to wherever the

function was called. Consider this basic form:

Chapter 8 Functions 173

10 0789 CH08 3/20/01 5:24 PM Page 173

function doubleIt(whatNum){
return whatNum*2;

}

Now, from anywhere in your movie, you can call this function. Because this

function returns a value, the place where you call the function turns into the

value that’s returned. So, trace(doubleIt(12)) will display 24 in the output

window. You could also say this:

theAnswer=doubleIt(22);
trace(“Two times 22 is “+theAnswer);

One important note about the word return. In addition to specifying what is

returned (to wherever the function is called), this will jump out of the function.

That is, if there are more lines of code after return is encountered, they’ll be

skipped. This is actually kind of nice even if you’re not trying to write a function

that returns a value. For example, an if-statement at the top of a function could

cause the rest of the function to be skipped when a particular condition is met.

We looked at this technique in Chapter 5 and compared it to break—which only

jumps out of an enclosed loop (not the entire function the way return does).

The main thing to remember about functions that return values is that you’ll

probably want to call them from within a statement. Simply writing the script

doubleIt(12) doesn’t really do anything because the answer (the value 24 that is

returned) is not being used anywhere. There’s no rule that says you have to use

what’s returned from a function. It’s just more likely that when you call a func-

tion that returns a value, you will want to use that value somehow. Compare it to

using a slot machine (you “call” the slot machine function by pulling the arm).

Normally, you would take the winnings that are “returned,” but if you want, you

can just watch the pretty shapes spinning.

Let’s look at a more practical example than my doubleIt() function. We can

write a simple function that uses a currency exchange rate to calculate the value

in U.S. dollars for a price given in Canadian dollars. The idea is that anytime

you’re given a price in Canadian dollars, you can call the convert() function

(with the value in Canadian dollars as a parameter) and the value in U.S. dollars

will be returned into the place the function is called. For example, you can call

this function like so:

Trace(“20 dollars Canadian is really “+convert(20)+” in US dollars”);

Part I Foundation174

10 0789 CH08 3/20/01 5:24 PM Page 174

This function is explored in great detail in the “Currency Exchange Calculator”

workshop, but here’s a finished version:

function convert(amountInCAD){
exchangeRate= 0.62;
return amountInCAD*exchangeRate;

}

The only reason I use the variable exchangeRate is that I want a clear and easy

way to adjust that value (because it obviously varies). You could consolidate this

into one line if you simply used 0.62 in place of exchangeRate in the second

line. Actually, you could also add some fancy features that rounded off the

answer. When you see the “Currency Exchange Calculator” workshop, you will

see all kinds of fancy features—such as making the answer appear in “money

format” ($1.50, not 1.5, for example). The methods of the Math object explored

in Chapter 5 (as well as the String object that you’ll see next chapter) will make

this process relatively simple. As with all functions, those that return values

aren’t particularly difficult to write. The effort comes in designing a good one.

You’ll build your skills with practice.

Finally, it’s not necessary that a function that returns a value must also accept

parameters. It just makes sense when you want the function to do something with

a value you provide.

Using Functions as Methods

Built-in functions can be called from anywhere by simply referring to the func-

tion name (as in Number(anExpression)). Unlike built-in functions, for home-

made functions, you have to target the timeline where the function exists. Often,

I write all my general purpose functions in the main timeline. If I want to call

such a function from within a clip or nested clip, I have to remember to include

_root. before the function’s name (as in _root.convert(12)). As previously

mentioned, a function that’s written in a keyframe of a different timeline needs to

be targeted as well. You could actually have two different Movie Clips each with

a function named myFunction() in their first keyframe. These functions could

produce entirely different results. Within either clip, simply calling the function

(as myFunction()) would work great. If you were outside the clip or wanted to

target the myFunction() of another clip, you’d have to precede the name with a

path. For example, _root.someClip.myFunction() would execute the

myFunction inside the clip with an instance name of “someClip”.

Chapter 8 Functions 175

10 0789 CH08 3/20/01 5:24 PM Page 175

To understand creating functions that perform like methods, recall what a method

is. A method is a function that is applied to a single instance of a movie clip.

(Actually, methods are functions that affect objects—but the object with which

we’re most familiar is a movie clip instance.) The “Action” gotoAndStop(1) is

really a method because it is applied to the timeline in only one clip at a time. If

you design them right, custom functions can act just like methods.

Let’s write a function that serves as a method. I’d like a method called grow()

that will increase both the _xscale and the _yscale properties of a clip (it’s

always such a pain to set both these because there’s no “_scale” property). First,

make a clip by drawing a circle, selecting it, and choosing Convert to Symbol.

Then go inside the master clip and attach this script to the first frame:

function grow(){
_xscale+=10;
_yscale+=10;

}

Translated, this says, set the _xscale to 10 more and set the _yscale to 10 more.

Which _xscale? Because no clip is targeted, the clip itself will grow. Now, this

function can be called from anywhere inside the clip simply by saying grow(),

but I want to do it from the main timeline. Drag a few instances of this clip to the

main timeline, and then name each instance something unique (maybe circle_1,

circle_2, and so on). Now, in the main timeline, create two buttons, one with

this script:

on (release) {
circle_1.grow();

}

The other button’s script can be

on (release) {
circle_2.grow();

}

Check out Figure 8.3.

Part I Foundation176

10 0789 CH08 3/20/01 5:24 PM Page 176

Figure 8.3 A function inside the master symbol acts like a method of each instance.

It looks exactly like applying a method to a clip (like you might do

circle_1. nextFrame()).This example really does behave like a method for

one important reason. The function refers (relatively) to the clip in which it is

contained. I don’t think this is a hard-and-fast rule of what makes a custom

method, but for a function to act like a method, I think it’s fair to say that the

function has to affect the clip it’s inside. All methods are functions—not all

functions are methods. When functions are unique to the clip in which they’re

contained, you can think of them as methods.

Local Variables

The variations of functions (acting like methods, returning values, accepting

parameters, and acting like subroutines) are all part of the same thing: functions.

They’re not even exclusive concepts. For example, you can have a subroutine that

accepts parameters. The differences are in the way you use the functions you cre-

ate. Local variables are another concept related to functions. You can use local

variables in any type of function, but you don’t have to.

Local variables are used just like any other variable except they exist only while

inside the function. Similar to the way a named parameter has a value only while

you’re inside the function, local variables can be accessed only from within the

function. The only real benefit of local variables is that they cease to occupy any

Chapter 8 Functions 177

10 0789 CH08 3/20/01 5:24 PM Page 177

memory after they’re used. This concept of “good housekeeping” is not terribly

important until your movies become very complex—and even then, it’s likely

that the user’s computer memory (RAM) is large enough to make the issue

almost nonexistent. But it’s worth understanding, because there’s no reason to

use more memory than you have to.

Normally, after you assign a value to a variable (like username=”phillip”), a

small portion of RAM is dedicated to that variable. At any time, you can ascer-

tain the value of username. Even if you’re in another timeline, you can access the

variable by preceding its name with the path to the variable. That variable will

“live” forever—even if you reassign it to an empty string (as username=””, for

example). If you are done with the variable, you can use the delete statement to

remove it from memory (delete username). Depending on your application, you

might want the variable to “live” forever. Perhaps you’re tracking a user’s score

and you don’t want to flush it from memory. Just remember that even if you stop

using a variable, it’s still occupying a portion of RAM (unless you delete it).

Such “normal” variables can be considered global variables in that they’re avail-

able at any time and from anywhere (that is, they’re not “local”).

All variables are safe, yet temporary, storage for data. They are temporary in that

when you restart the movie, they are gone (or at least reinitialized). Some vari-

ables are used so briefly that you should consider making them local variables. A

local variable does occupy RAM, but as soon as you leave the function that RAM

is released and the variable ceases to exist. The way that you declare a local vari-

able in a function is by using var. There are two ways; you can either say var

tempVar (where tempVar will be the local variable) or var tempVar=”initial”

(where tempVar is the local variable and you’re assigning a value from the get-

go—to, in this case, the string “initial”). Then, from anywhere inside the

enclosed function, you can refer to the variable by name (you don’t need to pro-

ceed with var).

A perfect example of where I should have used a local variable was for the

exchangeRate variable in this function:

function convert(amountInCAD){
exchangeRate= .62;
return amountInCAD*exchangeRate;

}

Part I Foundation178

10 0789 CH08 3/20/01 5:24 PM Page 178

Because exchangeRate was used only once for convenience—and never again

outside the function—a local variable would have been more appropriate. It

would look like this:

function convert(amountInCAD){
var exchangeRate= .62;
return amountInCAD*exchangeRate;

}

Just that simple var before the first use of the variable makes it local. (Also,

remember that you won’t be able to access the value of a local variable from out-

side the function.)

Here’s a great analogy to understand local variables. Just remember that variables

are for storage. If you’re baking a cake, you’ll likely need to mix all the dry

ingredients before combining them with the wet ingredients. If you use a bowl to

temporarily hold the flour, salt, baking powder, and so on, the bowl can be con-

sidered a local variable. You put all the dry ingredients in one bowl, mix them,

and then finally pour the whole bowlful into another bowl that contains your

eggs, milk, vanilla, and the rest. The dish in which you bake the cake is more like

a regular (global) variable. You pour the whole cake mixture into this dish, bake,

and serve inside the dish. You want the baking dish to stick around for a while.

This analogy is best for thinking about local variables. Often you want a place to

temporarily store information (the dry ingredients or the exchange rate, for exam-

ple). Then when you’re done, you don’t need the variable (or bowl) anymore.

The truth is that if you never use a local variable, you’ll probably never know the

difference. It becomes an issue only when you’re storing (unnecessarily) an enor-

mous amount of data in a global variable. In any case, now you know how to

declare a local variable!

Applying Functions to Previous Knowledge

Now that you’ve seen most of the ways built-in and homemade functions behave,

it makes sense to review some previously covered concepts, which happen to

apply seamlessly to functions. This section is almost a summary of functions—

and that’s how you should see it. Here’s a chance to solidify a few concepts

you’ve heard over and over.

Chapter 8 Functions 179

10 0789 CH08 3/20/01 5:24 PM Page 179

Review Built-in Functions

Built-in functions all return values. Some people actually define a “function” as

only something that returns values. But we’ve seen that homemade functions

don’t have this requirement—Flash’s built-in functions do. If you simply remem-

ber that all built-in functions return values, you’ll also remember that they are

used within expressions or statements. They don’t create statements by them-

selves.

Almost all the built-in functions follow the form functionName(optionalParam).

Some accept more than one parameter. Both true and false are functions in that

they return true or false, respectively, but they don’t use the parentheses. Use

true, not true(). Finally, the two “functions” scroll and maxscroll are really

“properties” of variables associated with dynamic text fields. If you have a vari-

able (for example, myText) associated with a Multiline Dynamic Text field, the

default myText.scroll is 1 (meaning that the first line appears at the top of the

field). If you executed the script myText.scroll=2, you’d see the second line

appear at the top of the field (effectively making it look like it scrolled down one

line, as in Figure 8.4). Both scroll and maxscroll are definitely not functions.

They look like properties in the form variable.scroll—but, unlike other prop-

erties, these two affect variables (not clip instances).

Finally, there is a whole set of “Actions” that act very much like homemade func-

tions. All of Flash’s Actions are either methods of clips or ActionScript state-

ments. An example of an Action that’s really a method is nextFrame(), which

applies to a specific clip’s timeline (or the current timeline when no clip is speci-

fied). The majority of the Actions, however, are really just statements. Most of

these structural elements of the ActionScript language were covered in Chapter 5.

Although we studied both methods and functions, realize that built-in examples

of each exist within Flash.

Part I Foundation180

10 0789 CH08 3/20/01 5:24 PM Page 180

Figure 8.4 You can make a Dynamic Text field scroll by changing the scroll property

of the associated variable.

Things to Remember

There are many things to remember when writing or calling functions. I think the

biggest concept is that homemade functions are called by preceding the function

name with a path to that function. Because functions are always written in

keyframes, you simply need to target the timeline where it resides.

Naturally, functions that return values should be called from within an expression

because the value that is returned will be returned to wherever the function was

called. This concept has been explained, but realize that just because your func-

tion returns values, that doesn’t mean it can’t do other things, too. That is, a func-

tion can act as a subroutine (maybe setting the _alpha property of several clips)

and when it’s done, it can return a value. There’s also no rule that says if a

Chapter 8 Functions 181

10 0789 CH08 3/20/01 5:24 PM Page 181

function returns a value, you have to use that value. You might have a function

that does several things and then returns a value. If you simply call it by name—

for example, doit()—the value that’s returned never gets used but the function

still executes (including all contained scripts). Because the function returns a

value, you might normally use it within a statement such as theAnswer=doit(),

but you don’t have to.

Finally, don’t forget all that you learned about data types in Chapter 4. When

passing values as parameters, pay attention to the data type sent to and expected

by the function. Also realize functions that return values only return values of the

type you specify. For example, if the following function is called using

doit(“one”), you’ll have trouble because the parameter being sent is a string and

the function almost certainly expects a number.

function doit(whatNum){
var newLoc=whatNum*10;
someClip._x=newLoc;

}

Similarly, consider the following function, which returns a string. If you call it

within an expression that treats the result as a number, you’ll get unexpected

results.

function getAlpha(){
return “The alpha is “+curAlpha

}

You’ll also have trouble if you call the preceding function with

someClip._alpha=getAlpha()

The problem is that you’re trying to set the _alpha of “someClip” to a string

(where you can only set _alpha to a number). This is simply a case of mixing

data types. You’re trying to use apples in the orange juice maker, if you will.

Remember, too, that there’s a movie clip data type. You refer clips by name but

not a string version. That is, simply typing someClip._x=100 will set the _x prop-

erty of a clip instance called someClip. Notice that there are no quotation marks.

The reason I’m reminding you now is that you can store a reference to a clip

instance in a variable or as a parameter. For example, the following function

accepts—as a parameter—a reference to a clip:

function moveOne(whichOne){
whichOne._x+=10;

}

Part I Foundation182

10 0789 CH08 3/20/01 5:24 PM Page 182

This function will work only when the movie clip data type is sent as a parame-

ter. For example, if you have a clip instance named “red,” you can use

moveOne(_root.red). If the clip is in the same timeline from which you call this

function, you could use moveOne(red). But notice that it’s a reference to the

clip (data type “movie clip”), not a string, that is being passed as the parameter.

Finally, an esoteric point should be made about the terms argument and parame-

ter. In my opinion, they can be used interchangeably. Some people define param-

eter as the general term and argument as the specific term. That is, when you’re

not sure what the parameter’s value is, it’s still a parameter. After you are done

analyzing and know the value, you call it an argument. So, a function can accept

parameters, but when you call the function, you’ll use a particular value as an

argument. I’m only mentioning this definition so that you’ll know argument and

parameter are really the same thing. I’ll try to use “parameter” throughout the

book, but don’t be surprised when you hear someone else say “argument.”

Of course, there are countless other things to remember, but at this point, I think

it makes the most sense to practice. Try to analyze a Flash movie you made in

the past to see whether a function can reduce redundant code. Naturally, if it

“ain’t broke,” there’s little incentive to fix it. However, recognizing places in your

own code that can be optimized is a great skill. If you’re having a hard time find-

ing flaws in your own movies, here are a few exercises to try out:

• Write a function that moves a clip instance (maybe a box) 10 pixels to the
right. Create two different buttons that call this function.

• Adapt the preceding function to accept a parameter so that it can move the
clip instance 10 pixels to the right or to the left—depending on the value of
a parameter received. Make one button move the clip to the right, the other
to the left.

• Write a different function that returns half of the value provided as a
parameter. That is, if the function is called half(), calling the function
with trace (“Half of 4 is “+half(4)) will result in “Half of 4 is 2”
appearing in the output window.

• Write another function that acts like a method inside a clip. Make one that
reduces the clip’s _alpha or increases it. You can write two methods or one
that accepts a parameter. In the end, you should be able to use buttons in
the main timeline to target any particular instance (of this clip with the
method) and you can reduce or increase the _alpha.

Chapter 8 Functions 183

10 0789 CH08 3/20/01 5:24 PM Page 183

Summary

Functions are so useful that it’s hard to imagine programming without them. It’s

possible (after all, you couldn’t write functions in Flash 4), but functions mean

that repeated code can be consolidated; that one block of code can behave

slightly differently depending on the value of a parameter received; that values

can be returned; and that you can create your own methods.

Throughout all these techniques, one thing remains consistent: The form of a

function is always the same. Additional parameters will sometimes appear in the

parentheses following the function name, and sometimes you’ll return values, but

the form is always the same. Just like if-statements and for-loops, you should

start every function by typing the core form (always in a keyframe script) as

function anyName(){
}

Then you can fill in the space between the curly brackets and parameters if you

want. Practically every workshop exercise involves a function, so get used to it!

You’ll learn to love the way that functions minimize typing.

Part I Foundation184

10 0789 CH08 3/20/01 5:24 PM Page 184

